Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the radian measure of the central angle corresponding to an arc that is [tex]\(\frac{1}{4}\)[/tex] of the circumference of a circle, follow these steps:
1. Understand the Relationship Between the Arc and the Circumference: Since arc CD is [tex]\(\frac{1}{4}\)[/tex] of the circumference, this means that the central angle subtended by arc CD would also be [tex]\(\frac{1}{4}\)[/tex] of the total central angle in a circle.
2. Recall the Full Circumference Central Angle: In a circle, the total central angle corresponding to the complete circumference is [tex]\(2\pi\)[/tex] radians.
3. Calculate the Central Angle for Arc CD:
[tex]\[ \text{Central angle for arc CD} = \frac{1}{4} \times 2\pi \text{ radians} \][/tex]
4. Simplify the Expression:
[tex]\[ \frac{1}{4} \times 2\pi = \frac{2\pi}{4} = \frac{\pi}{2} \text{ radians} \][/tex]
Thus, the radian measure of the central angle corresponding to arc CD is [tex]\(\frac{\pi}{2}\)[/tex] radians.
Therefore, the correct answer is:
[tex]\[ \boxed{\frac{\pi}{2} \text{ radians}} \][/tex]
1. Understand the Relationship Between the Arc and the Circumference: Since arc CD is [tex]\(\frac{1}{4}\)[/tex] of the circumference, this means that the central angle subtended by arc CD would also be [tex]\(\frac{1}{4}\)[/tex] of the total central angle in a circle.
2. Recall the Full Circumference Central Angle: In a circle, the total central angle corresponding to the complete circumference is [tex]\(2\pi\)[/tex] radians.
3. Calculate the Central Angle for Arc CD:
[tex]\[ \text{Central angle for arc CD} = \frac{1}{4} \times 2\pi \text{ radians} \][/tex]
4. Simplify the Expression:
[tex]\[ \frac{1}{4} \times 2\pi = \frac{2\pi}{4} = \frac{\pi}{2} \text{ radians} \][/tex]
Thus, the radian measure of the central angle corresponding to arc CD is [tex]\(\frac{\pi}{2}\)[/tex] radians.
Therefore, the correct answer is:
[tex]\[ \boxed{\frac{\pi}{2} \text{ radians}} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.