Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Evaluate the limit:

[tex]\[ \lim_{{x \to 0}} \frac{x - \sin x}{x^3} \][/tex]


Sagot :

To solve the limit [tex]\(\lim _{x \rightarrow 0} \frac{x-\sin x}{x^3}\)[/tex], let's follow a detailed, step-by-step approach.

1. Understand the function and the limit:
We need to find the limit of [tex]\(\frac{x - \sin x}{x^3}\)[/tex] as [tex]\(x\)[/tex] approaches 0.

2. Apply L'Hôpital's Rule:
L'Hôpital's Rule is applicable here because directly substituting [tex]\(x = 0\)[/tex] into the function gives an indeterminate form [tex]\(\frac{0 - 0}{0^3}\)[/tex] or [tex]\(\frac{0}{0}\)[/tex]. According to L'Hôpital's Rule, if we have an indeterminate form, we can take the derivatives of the numerator and the denominator and then re-evaluate the limit.

So we need to find the derivatives of the numerator [tex]\(x - \sin x\)[/tex] and the denominator [tex]\(x^3\)[/tex].

3. First derivative:
- Derivative of the numerator [tex]\(x - \sin x\)[/tex]:
[tex]\[ \frac{d}{dx}(x - \sin x) = 1 - \cos x \][/tex]
- Derivative of the denominator [tex]\(x^3\)[/tex]:
[tex]\[ \frac{d}{dx}(x^3) = 3x^2 \][/tex]

Now, we apply L'Hôpital's Rule:
[tex]\[ \lim_{x \to 0} \frac{x - \sin x}{x^3} = \lim_{x \to 0} \frac{1 - \cos x}{3x^2} \][/tex]

4. Re-evaluate the limit:
We still have an indeterminate form [tex]\(\frac{1 - 1}{0}\)[/tex]. Thus, we apply L'Hôpital's Rule a second time by differentiating the numerator and denominator again.

4. Second derivative:
- Derivative of the numerator [tex]\(1 - \cos x\)[/tex]:
[tex]\[ \frac{d}{dx}(1 - \cos x) = \sin x \][/tex]
- Derivative of the denominator [tex]\(3x^2\)[/tex]:
[tex]\[ \frac{d}{dx}(3x^2) = 6x \][/tex]

Applying L'Hôpital's Rule again:
[tex]\[ \lim_{x \to 0} \frac{1 - \cos x}{3x^2} = \lim_{x \to 0} \frac{\sin x}{6x} \][/tex]

5. Simplify and evaluate:
We can simplify the limit:
[tex]\[ \lim_{x \to 0} \frac{\sin x}{6x} = \frac{1}{6} \lim_{x \to 0} \frac{\sin x}{x} \][/tex]

We know from standard limit results that:
[tex]\[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \][/tex]

Therefore:
[tex]\[ \frac{1}{6} \lim_{x \to 0} \frac{\sin x}{x} = \frac{1}{6} \times 1 = \frac{1}{6} \][/tex]

So, the limit is:

[tex]\[ \lim _{x \rightarrow 0} \frac{x-\sin x}{x^3} = \frac{1}{6} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.