Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the approximate natural abundance of [tex]\({}^{151}\text{Eu}\)[/tex], let's follow a step-by-step process:
1. Define Variables:
Let [tex]\( x \)[/tex] be the fractional abundance (i.e., the proportion) of [tex]\({}^{151}\text{Eu}\)[/tex]. Therefore, the fractional abundance of [tex]\({}^{153}\text{Eu}\)[/tex] will be [tex]\( 1 - x \)[/tex].
2. Create an Equation:
The atomic mass of europium ([tex]\(\text{Eu}\)[/tex]) is a weighted average of the atomic masses of its isotopes. We can write the equation as follows:
[tex]\[ 151.0 \cdot x + 153.0 \cdot (1 - x) = 151.96 \][/tex]
3. Simplify the Equation:
We will distribute and then solve for [tex]\( x \)[/tex]:
[tex]\[ 151.0x + 153.0 - 153.0x = 151.96 \][/tex]
Combine like terms:
[tex]\[ 151.0x - 153.0x = 151.96 - 153.0 \][/tex]
[tex]\[ -2.0x = -1.04 \][/tex]
4. Solve for [tex]\( x \)[/tex]:
By dividing both sides of the equation by [tex]\(-2.0\)[/tex]:
[tex]\[ x = \frac{-1.04}{-2.0} \][/tex]
[tex]\[ x = 0.52 \][/tex]
5. Convert to Percentage:
The fractional abundance [tex]\( x \)[/tex] of [tex]\({}^{151}\text{Eu}\)[/tex] is 0.52, which we convert to a percentage:
[tex]\[ \text{Percentage} = 0.52 \times 100\% = 52\% \][/tex]
Thus, the approximate natural abundance of [tex]\({}^{151}\text{Eu}\)[/tex] is 52%.
Therefore, the correct answer is:
C. 50% (Note: We calculated approximately 52%, thus the closest match among the provided choices is 50%.)
1. Define Variables:
Let [tex]\( x \)[/tex] be the fractional abundance (i.e., the proportion) of [tex]\({}^{151}\text{Eu}\)[/tex]. Therefore, the fractional abundance of [tex]\({}^{153}\text{Eu}\)[/tex] will be [tex]\( 1 - x \)[/tex].
2. Create an Equation:
The atomic mass of europium ([tex]\(\text{Eu}\)[/tex]) is a weighted average of the atomic masses of its isotopes. We can write the equation as follows:
[tex]\[ 151.0 \cdot x + 153.0 \cdot (1 - x) = 151.96 \][/tex]
3. Simplify the Equation:
We will distribute and then solve for [tex]\( x \)[/tex]:
[tex]\[ 151.0x + 153.0 - 153.0x = 151.96 \][/tex]
Combine like terms:
[tex]\[ 151.0x - 153.0x = 151.96 - 153.0 \][/tex]
[tex]\[ -2.0x = -1.04 \][/tex]
4. Solve for [tex]\( x \)[/tex]:
By dividing both sides of the equation by [tex]\(-2.0\)[/tex]:
[tex]\[ x = \frac{-1.04}{-2.0} \][/tex]
[tex]\[ x = 0.52 \][/tex]
5. Convert to Percentage:
The fractional abundance [tex]\( x \)[/tex] of [tex]\({}^{151}\text{Eu}\)[/tex] is 0.52, which we convert to a percentage:
[tex]\[ \text{Percentage} = 0.52 \times 100\% = 52\% \][/tex]
Thus, the approximate natural abundance of [tex]\({}^{151}\text{Eu}\)[/tex] is 52%.
Therefore, the correct answer is:
C. 50% (Note: We calculated approximately 52%, thus the closest match among the provided choices is 50%.)
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.