Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the vertex of the parabola given by the equation [tex]\(y = x^2 + 8x + 12\)[/tex], follow these steps:
1. Identify the coefficients:
- The coefficient [tex]\(a\)[/tex] of [tex]\(x^2\)[/tex] is 1.
- The coefficient [tex]\(b\)[/tex] of [tex]\(x\)[/tex] is 8.
- The constant term [tex]\(c\)[/tex] is 12.
2. Determine the x-coordinate of the vertex ([tex]\(h\)[/tex]):
- The x-coordinate [tex]\(h\)[/tex] of the vertex of a parabola in the form [tex]\(y = ax^2 + bx + c\)[/tex] is given by the formula:
[tex]\[ h = -\frac{b}{2a} \][/tex]
- Substituting [tex]\(a = 1\)[/tex] and [tex]\(b = 8\)[/tex] into the formula gives:
[tex]\[ h = -\frac{8}{2 \cdot 1} = -\frac{8}{2} = -4 \][/tex]
3. Determine the y-coordinate of the vertex ([tex]\(k\)[/tex]):
- The y-coordinate [tex]\(k\)[/tex] is obtained by substituting [tex]\(h\)[/tex] back into the original equation:
[tex]\[ k = a(-4)^2 + b(-4) + c \][/tex]
- Substituting [tex]\(a = 1\)[/tex], [tex]\(b = 8\)[/tex], [tex]\(c = 12\)[/tex], and [tex]\(h = -4\)[/tex] into the equation:
[tex]\[ k = 1(-4)^2 + 8(-4) + 12 \][/tex]
- Calculate each term:
[tex]\[ k = 1(16) + (-32) + 12 \][/tex]
[tex]\[ k = 16 - 32 + 12 \][/tex]
[tex]\[ k = -4 \][/tex]
So, the vertex of the parabola [tex]\(y = x^2 + 8x + 12\)[/tex] is [tex]\((-4, -4)\)[/tex].
Therefore, the correct answer is [tex]\((-4, -4)\)[/tex].
1. Identify the coefficients:
- The coefficient [tex]\(a\)[/tex] of [tex]\(x^2\)[/tex] is 1.
- The coefficient [tex]\(b\)[/tex] of [tex]\(x\)[/tex] is 8.
- The constant term [tex]\(c\)[/tex] is 12.
2. Determine the x-coordinate of the vertex ([tex]\(h\)[/tex]):
- The x-coordinate [tex]\(h\)[/tex] of the vertex of a parabola in the form [tex]\(y = ax^2 + bx + c\)[/tex] is given by the formula:
[tex]\[ h = -\frac{b}{2a} \][/tex]
- Substituting [tex]\(a = 1\)[/tex] and [tex]\(b = 8\)[/tex] into the formula gives:
[tex]\[ h = -\frac{8}{2 \cdot 1} = -\frac{8}{2} = -4 \][/tex]
3. Determine the y-coordinate of the vertex ([tex]\(k\)[/tex]):
- The y-coordinate [tex]\(k\)[/tex] is obtained by substituting [tex]\(h\)[/tex] back into the original equation:
[tex]\[ k = a(-4)^2 + b(-4) + c \][/tex]
- Substituting [tex]\(a = 1\)[/tex], [tex]\(b = 8\)[/tex], [tex]\(c = 12\)[/tex], and [tex]\(h = -4\)[/tex] into the equation:
[tex]\[ k = 1(-4)^2 + 8(-4) + 12 \][/tex]
- Calculate each term:
[tex]\[ k = 1(16) + (-32) + 12 \][/tex]
[tex]\[ k = 16 - 32 + 12 \][/tex]
[tex]\[ k = -4 \][/tex]
So, the vertex of the parabola [tex]\(y = x^2 + 8x + 12\)[/tex] is [tex]\((-4, -4)\)[/tex].
Therefore, the correct answer is [tex]\((-4, -4)\)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.