Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the equation of the line using the given conditions – a slope of [tex]\(-\frac{1}{6}\)[/tex] and the point [tex]\((4, -2)\)[/tex] – we will proceed in two parts.
### Part 1: Point-Slope Form
The point-slope form of a linear equation is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Here, [tex]\( m \)[/tex] is the slope, and [tex]\( (x_1, y_1) \)[/tex] is the point through which the line passes.
Given:
- Slope [tex]\( m = -\frac{1}{6} \)[/tex]
- Point [tex]\( (x_1, y_1) = (4, -2) \)[/tex]
Plug these values into the point-slope form formula:
[tex]\[ y - (-2) = -\frac{1}{6}(x - 4) \][/tex]
Simplify the left side:
[tex]\[ y + 2 = -\frac{1}{6}(x - 4) \][/tex]
So, the equation of the line in point-slope form is:
[tex]\[ y + 2 = -\frac{1}{6}(x - 4) \][/tex]
### Part 2: Slope-Intercept Form
The slope-intercept form of a linear equation is given by:
[tex]\[ y = mx + b \][/tex]
We start with the point-slope form equation obtained:
[tex]\[ y + 2 = -\frac{1}{6}(x - 4) \][/tex]
Expand the right side:
[tex]\[ y + 2 = -\frac{1}{6}x + \frac{4}{6} \][/tex]
Simplify the constant term on the right side:
[tex]\[ y + 2 = -\frac{1}{6}x + \frac{2}{3} \][/tex]
Next, subtract 2 from both sides to solve for [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{1}{6}x + \frac{2}{3} - 2 \][/tex]
Convert -2 to fractions to combine with [tex]\(\frac{2}{3}\)[/tex]:
[tex]\[ y = -\frac{1}{6}x + \frac{2}{3} - \frac{6}{3} \][/tex]
Subtract [tex]\(\frac{6}{3}\)[/tex] from [tex]\(\frac{2}{3}\)[/tex]:
[tex]\[ y = -\frac{1}{6}x - \frac{4}{3} \][/tex]
Thus, the equation of the line in slope-intercept form is:
[tex]\[ y = -\frac{1}{6}x - \frac{4}{3} \][/tex]
In summary:
- Point-slope form: [tex]\( y + 2 = -\frac{1}{6}(x - 4) \)[/tex]
- Slope-intercept form: [tex]\( y = -\frac{1}{6}x - \frac{4}{3} \)[/tex]
### Part 1: Point-Slope Form
The point-slope form of a linear equation is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Here, [tex]\( m \)[/tex] is the slope, and [tex]\( (x_1, y_1) \)[/tex] is the point through which the line passes.
Given:
- Slope [tex]\( m = -\frac{1}{6} \)[/tex]
- Point [tex]\( (x_1, y_1) = (4, -2) \)[/tex]
Plug these values into the point-slope form formula:
[tex]\[ y - (-2) = -\frac{1}{6}(x - 4) \][/tex]
Simplify the left side:
[tex]\[ y + 2 = -\frac{1}{6}(x - 4) \][/tex]
So, the equation of the line in point-slope form is:
[tex]\[ y + 2 = -\frac{1}{6}(x - 4) \][/tex]
### Part 2: Slope-Intercept Form
The slope-intercept form of a linear equation is given by:
[tex]\[ y = mx + b \][/tex]
We start with the point-slope form equation obtained:
[tex]\[ y + 2 = -\frac{1}{6}(x - 4) \][/tex]
Expand the right side:
[tex]\[ y + 2 = -\frac{1}{6}x + \frac{4}{6} \][/tex]
Simplify the constant term on the right side:
[tex]\[ y + 2 = -\frac{1}{6}x + \frac{2}{3} \][/tex]
Next, subtract 2 from both sides to solve for [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{1}{6}x + \frac{2}{3} - 2 \][/tex]
Convert -2 to fractions to combine with [tex]\(\frac{2}{3}\)[/tex]:
[tex]\[ y = -\frac{1}{6}x + \frac{2}{3} - \frac{6}{3} \][/tex]
Subtract [tex]\(\frac{6}{3}\)[/tex] from [tex]\(\frac{2}{3}\)[/tex]:
[tex]\[ y = -\frac{1}{6}x - \frac{4}{3} \][/tex]
Thus, the equation of the line in slope-intercept form is:
[tex]\[ y = -\frac{1}{6}x - \frac{4}{3} \][/tex]
In summary:
- Point-slope form: [tex]\( y + 2 = -\frac{1}{6}(x - 4) \)[/tex]
- Slope-intercept form: [tex]\( y = -\frac{1}{6}x - \frac{4}{3} \)[/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.