Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's solve the problem step by step.
You have a probability distribution given as:
[tex]\[ \begin{array}{c|ccc} x & 3 & 6 & 9 \\ \hline p & 0.3 & 0.4 & 0.3 \\ \end{array} \][/tex]
We need to find the standard deviation of this probability distribution. We'll proceed through the following steps:
1. Calculate the expected value (mean) [tex]\( \mu \)[/tex] of the distribution:
[tex]\[ \mu = \sum_{i} (x_{i} \cdot p_{i}) \][/tex]
Plug in the values:
[tex]\[ \mu = (3 \times 0.3) + (6 \times 0.4) + (9 \times 0.3) \][/tex]
[tex]\[ \mu = 0.9 + 2.4 + 2.7 \][/tex]
[tex]\[ \mu = 6.0 \][/tex]
2. Calculate the variance [tex]\( \sigma^2 \)[/tex]:
The variance is calculated using:
[tex]\[ \sigma^2 = \sum_{i} \left( (x_{i} - \mu)^2 \cdot p_{i} \right) \][/tex]
Plug in the values:
[tex]\[ \sigma^2 = (3 - 6)^2 \times 0.3 + (6 - 6)^2 \times 0.4 + (9 - 6)^2 \times 0.3 \][/tex]
[tex]\[ = (-3)^2 \times 0.3 + 0^2 \times 0.4 + 3^2 \times 0.3 \][/tex]
[tex]\[ = 9 \times 0.3 + 0 \times 0.4 + 9 \times 0.3 \][/tex]
[tex]\[ = 2.7 + 0 + 2.7 \][/tex]
[tex]\[ = 5.4 \][/tex]
3. Calculate the standard deviation [tex]\( \sigma \)[/tex]:
Standard deviation is the square root of the variance:
[tex]\[ \sigma = \sqrt{\sigma^2} \][/tex]
Plug in the variance:
[tex]\[ \sigma = \sqrt{5.4} \][/tex]
[tex]\[ \sigma \approx 2.32 \][/tex]
So, the value of the standard deviation is approximately [tex]\( 2.32 \)[/tex], which matches the provided numerical result.
Therefore, the value in the options that corresponds to this result is:
[tex]\[ \boxed{2.32} \][/tex]
You have a probability distribution given as:
[tex]\[ \begin{array}{c|ccc} x & 3 & 6 & 9 \\ \hline p & 0.3 & 0.4 & 0.3 \\ \end{array} \][/tex]
We need to find the standard deviation of this probability distribution. We'll proceed through the following steps:
1. Calculate the expected value (mean) [tex]\( \mu \)[/tex] of the distribution:
[tex]\[ \mu = \sum_{i} (x_{i} \cdot p_{i}) \][/tex]
Plug in the values:
[tex]\[ \mu = (3 \times 0.3) + (6 \times 0.4) + (9 \times 0.3) \][/tex]
[tex]\[ \mu = 0.9 + 2.4 + 2.7 \][/tex]
[tex]\[ \mu = 6.0 \][/tex]
2. Calculate the variance [tex]\( \sigma^2 \)[/tex]:
The variance is calculated using:
[tex]\[ \sigma^2 = \sum_{i} \left( (x_{i} - \mu)^2 \cdot p_{i} \right) \][/tex]
Plug in the values:
[tex]\[ \sigma^2 = (3 - 6)^2 \times 0.3 + (6 - 6)^2 \times 0.4 + (9 - 6)^2 \times 0.3 \][/tex]
[tex]\[ = (-3)^2 \times 0.3 + 0^2 \times 0.4 + 3^2 \times 0.3 \][/tex]
[tex]\[ = 9 \times 0.3 + 0 \times 0.4 + 9 \times 0.3 \][/tex]
[tex]\[ = 2.7 + 0 + 2.7 \][/tex]
[tex]\[ = 5.4 \][/tex]
3. Calculate the standard deviation [tex]\( \sigma \)[/tex]:
Standard deviation is the square root of the variance:
[tex]\[ \sigma = \sqrt{\sigma^2} \][/tex]
Plug in the variance:
[tex]\[ \sigma = \sqrt{5.4} \][/tex]
[tex]\[ \sigma \approx 2.32 \][/tex]
So, the value of the standard deviation is approximately [tex]\( 2.32 \)[/tex], which matches the provided numerical result.
Therefore, the value in the options that corresponds to this result is:
[tex]\[ \boxed{2.32} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.