Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which pairs of points could lie on a line parallel to a line with a slope of [tex]\(-\frac{1}{5}\)[/tex], we need to calculate the slope of the line formed by each pair of points. Lines are parallel if and only if they have the same slope.
First, recall the formula for the slope [tex]\( m \)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex]:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
We will calculate the slope for each pair of points given:
1. For the points [tex]\((-8, 8)\)[/tex] and [tex]\( (2, 2) \)[/tex]:
[tex]\[ m = \frac{2 - 8}{2 - (-8)} = \frac{-6}{10} = -0.6 \][/tex]
2. For the points [tex]\( (5, -1) \)[/tex] and [tex]\( (0, 0) \)[/tex]:
[tex]\[ m = \frac{0 - (-1)}{0 - 5} = \frac{1}{-5} = -0.2 \][/tex]
3. For the points [tex]\((-3, 6)\)[/tex] and [tex]\( (6, -9) \)[/tex]:
[tex]\[ m = \frac{-9 - 6}{6 - (-3)} = \frac{-15}{9} = -1.6667 \][/tex]
4. For the points [tex]\((-2, 1)\)[/tex] and [tex]\((3, -2)\)[/tex]:
[tex]\[ m = \frac{-2 - 1}{3 - (-2)} = \frac{-3}{5} = -0.6 \][/tex]
5. For the points [tex]\((0, 2)\)[/tex] and [tex]\((5, 5)\)[/tex]:
[tex]\[ m = \frac{5 - 2}{5 - 0} = \frac{3}{5} = 0.6 \][/tex]
Now, we compare each calculated slope to [tex]\(-\frac{1}{5}\)[/tex] (which is [tex]\(-0.2\)[/tex] in decimal form). The only pair that has a slope that matches [tex]\(-0.2\)[/tex] is the second pair of points:
Thus, the pairs of points that could lie on a line parallel to the line with slope [tex]\(-\frac{1}{5}\)[/tex] are:
[tex]\[ \boxed{(5, -1) \text{ and } (0, 0)} \][/tex]
There is only one correct option among the given pairs.
First, recall the formula for the slope [tex]\( m \)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex]:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
We will calculate the slope for each pair of points given:
1. For the points [tex]\((-8, 8)\)[/tex] and [tex]\( (2, 2) \)[/tex]:
[tex]\[ m = \frac{2 - 8}{2 - (-8)} = \frac{-6}{10} = -0.6 \][/tex]
2. For the points [tex]\( (5, -1) \)[/tex] and [tex]\( (0, 0) \)[/tex]:
[tex]\[ m = \frac{0 - (-1)}{0 - 5} = \frac{1}{-5} = -0.2 \][/tex]
3. For the points [tex]\((-3, 6)\)[/tex] and [tex]\( (6, -9) \)[/tex]:
[tex]\[ m = \frac{-9 - 6}{6 - (-3)} = \frac{-15}{9} = -1.6667 \][/tex]
4. For the points [tex]\((-2, 1)\)[/tex] and [tex]\((3, -2)\)[/tex]:
[tex]\[ m = \frac{-2 - 1}{3 - (-2)} = \frac{-3}{5} = -0.6 \][/tex]
5. For the points [tex]\((0, 2)\)[/tex] and [tex]\((5, 5)\)[/tex]:
[tex]\[ m = \frac{5 - 2}{5 - 0} = \frac{3}{5} = 0.6 \][/tex]
Now, we compare each calculated slope to [tex]\(-\frac{1}{5}\)[/tex] (which is [tex]\(-0.2\)[/tex] in decimal form). The only pair that has a slope that matches [tex]\(-0.2\)[/tex] is the second pair of points:
Thus, the pairs of points that could lie on a line parallel to the line with slope [tex]\(-\frac{1}{5}\)[/tex] are:
[tex]\[ \boxed{(5, -1) \text{ and } (0, 0)} \][/tex]
There is only one correct option among the given pairs.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.