At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let's analyze the transformation described by John and identify the mistake he made.
1. Understanding the Transformation Rule:
The given transformation rule is [tex]\( (x, y) \rightarrow (x + 4, y + 7) \)[/tex].
2. Applying the Transformation to the Pre-Image:
The pre-image coordinates provided are [tex]\( (4, 5) \)[/tex].
- For the [tex]\( x \)[/tex]-coordinate: [tex]\( x + 4 \)[/tex]
- Substituting [tex]\( x = 4 \)[/tex]:
[tex]\( x_{image} = 4 + 4 = 8 \)[/tex]
- For the [tex]\( y \)[/tex]-coordinate: [tex]\( y + 7 \)[/tex]
- Substituting [tex]\( y = 5 \)[/tex]:
[tex]\( y_{image} = 5 + 7 = 12 \)[/tex]
3. Resulting Image Coordinates:
After applying the transformation rule, the image coordinates should be [tex]\( (8, 12) \)[/tex].
4. Comparison with John's Claimed Result:
John claimed the image should be [tex]\( (0, -2) \)[/tex]. Let's see why this is incorrect.
- If we compare [tex]\( (8, 12) \)[/tex] with [tex]\( (0, -2) \)[/tex], we can see they are not the same.
- Thus, the transformation [tex]\( (x, y) \rightarrow (x + 4, y + 7) \)[/tex] does not map [tex]\( (4, 5) \)[/tex] to [tex]\( (0, -2) \)[/tex].
5. Identifying John's Error:
- The error lies in John's misunderstanding of the transformation rule.
- He likely miscalculated or assumed wrong values when applying [tex]\( (x + 4, y + 7) \)[/tex].
### Summary:
John's mistake was in the application of the transformation rule. When correctly applying [tex]\( (4, 5) \)[/tex] with the given rule [tex]\( (x + 4, y + 7) \)[/tex], we derive the image coordinates as [tex]\( (8, 12) \)[/tex], not [tex]\( (0, -2) \)[/tex].
1. Understanding the Transformation Rule:
The given transformation rule is [tex]\( (x, y) \rightarrow (x + 4, y + 7) \)[/tex].
2. Applying the Transformation to the Pre-Image:
The pre-image coordinates provided are [tex]\( (4, 5) \)[/tex].
- For the [tex]\( x \)[/tex]-coordinate: [tex]\( x + 4 \)[/tex]
- Substituting [tex]\( x = 4 \)[/tex]:
[tex]\( x_{image} = 4 + 4 = 8 \)[/tex]
- For the [tex]\( y \)[/tex]-coordinate: [tex]\( y + 7 \)[/tex]
- Substituting [tex]\( y = 5 \)[/tex]:
[tex]\( y_{image} = 5 + 7 = 12 \)[/tex]
3. Resulting Image Coordinates:
After applying the transformation rule, the image coordinates should be [tex]\( (8, 12) \)[/tex].
4. Comparison with John's Claimed Result:
John claimed the image should be [tex]\( (0, -2) \)[/tex]. Let's see why this is incorrect.
- If we compare [tex]\( (8, 12) \)[/tex] with [tex]\( (0, -2) \)[/tex], we can see they are not the same.
- Thus, the transformation [tex]\( (x, y) \rightarrow (x + 4, y + 7) \)[/tex] does not map [tex]\( (4, 5) \)[/tex] to [tex]\( (0, -2) \)[/tex].
5. Identifying John's Error:
- The error lies in John's misunderstanding of the transformation rule.
- He likely miscalculated or assumed wrong values when applying [tex]\( (x + 4, y + 7) \)[/tex].
### Summary:
John's mistake was in the application of the transformation rule. When correctly applying [tex]\( (4, 5) \)[/tex] with the given rule [tex]\( (x + 4, y + 7) \)[/tex], we derive the image coordinates as [tex]\( (8, 12) \)[/tex], not [tex]\( (0, -2) \)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.