Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's go through the process of solving the question step by step.
### Step 1: State the Hypotheses
The null and alternative hypotheses are:
[tex]\[ H_0: P_1 \leq P_2 \][/tex]
[tex]\[ H_1: P_1 > P_2 \][/tex]
where [tex]\( P_1 \)[/tex] is the proportion of people over 55 who dream in black and white, and [tex]\( P_2 \)[/tex] is the proportion of people under 25 who dream in black and white. This is a one-tailed test.
### Step 2: Calculate the Sample Proportions
First, we calculate the sample proportions for each group:
[tex]\[ \hat{p}_1 = \frac{x_1}{n_1} = \frac{69}{295} \approx 0.2339 \][/tex]
[tex]\[ \hat{p}_2 = \frac{11}{290} \approx 0.0379 \][/tex]
### Step 3: Pooled Proportion
Next, we calculate the pooled proportion, assuming the null hypothesis is true:
[tex]\[ \hat{p}_{\text{pool}} = \frac{x_1 + x2}{n_1 + n_2} = \frac{69 + 11}{295 + 290} \approx 0.1368 \][/tex]
### Step 4: Standard Error
We calculate the standard error for the difference between the two sample proportions:
[tex]\[ SE = \sqrt{\hat{p}_{\text{pool}} \cdot (1 - \hat{p}_{\text{pool}}) \left( \frac{1}{n_1} + \frac{1}{n_2} \right)} \][/tex]
[tex]\[ SE \approx \sqrt{0.1368 \cdot (1 - 0.1368) \left( \frac{1}{295} + \frac{1}{290} \right)} \approx 0.0284 \][/tex]
### Step 5: Test Statistic
Calculate the z-score:
[tex]\[ z = \frac{\hat{p}_1 - \hat{p}_2}{SE} \][/tex]
[tex]\[ z = \frac{0.2339 - 0.0379}{0.0284} \approx 6.90 \][/tex]
### Step 6: P-value
Determine the p-value for the z-score in a one-tailed test:
[tex]\[ \text{P-value} \approx 1.32 \times 10^{-12} \][/tex]
### Step 7: Conclusion
Based on the p-value and the significance level of [tex]\( \alpha = 0.01 \)[/tex]:
Since [tex]\( \text{P-value} < \alpha \)[/tex], we reject the null hypothesis.
### Summary
Based on the hypothesis test, we reject the null hypothesis. There is significant evidence to support the claim that the proportion of people over 55 who dream in black and white is greater than the proportion for those under 25.
### Step 1: State the Hypotheses
The null and alternative hypotheses are:
[tex]\[ H_0: P_1 \leq P_2 \][/tex]
[tex]\[ H_1: P_1 > P_2 \][/tex]
where [tex]\( P_1 \)[/tex] is the proportion of people over 55 who dream in black and white, and [tex]\( P_2 \)[/tex] is the proportion of people under 25 who dream in black and white. This is a one-tailed test.
### Step 2: Calculate the Sample Proportions
First, we calculate the sample proportions for each group:
[tex]\[ \hat{p}_1 = \frac{x_1}{n_1} = \frac{69}{295} \approx 0.2339 \][/tex]
[tex]\[ \hat{p}_2 = \frac{11}{290} \approx 0.0379 \][/tex]
### Step 3: Pooled Proportion
Next, we calculate the pooled proportion, assuming the null hypothesis is true:
[tex]\[ \hat{p}_{\text{pool}} = \frac{x_1 + x2}{n_1 + n_2} = \frac{69 + 11}{295 + 290} \approx 0.1368 \][/tex]
### Step 4: Standard Error
We calculate the standard error for the difference between the two sample proportions:
[tex]\[ SE = \sqrt{\hat{p}_{\text{pool}} \cdot (1 - \hat{p}_{\text{pool}}) \left( \frac{1}{n_1} + \frac{1}{n_2} \right)} \][/tex]
[tex]\[ SE \approx \sqrt{0.1368 \cdot (1 - 0.1368) \left( \frac{1}{295} + \frac{1}{290} \right)} \approx 0.0284 \][/tex]
### Step 5: Test Statistic
Calculate the z-score:
[tex]\[ z = \frac{\hat{p}_1 - \hat{p}_2}{SE} \][/tex]
[tex]\[ z = \frac{0.2339 - 0.0379}{0.0284} \approx 6.90 \][/tex]
### Step 6: P-value
Determine the p-value for the z-score in a one-tailed test:
[tex]\[ \text{P-value} \approx 1.32 \times 10^{-12} \][/tex]
### Step 7: Conclusion
Based on the p-value and the significance level of [tex]\( \alpha = 0.01 \)[/tex]:
Since [tex]\( \text{P-value} < \alpha \)[/tex], we reject the null hypothesis.
### Summary
Based on the hypothesis test, we reject the null hypothesis. There is significant evidence to support the claim that the proportion of people over 55 who dream in black and white is greater than the proportion for those under 25.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.