Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's consider each of the given lines and determine the equations of the lines that are perpendicular to them and pass through the point [tex]\((2, 6)\)[/tex].
1. Line [tex]\( x = 2 \)[/tex]:
The line [tex]\( x = 2 \)[/tex] is a vertical line, which means any line perpendicular to [tex]\( x = 2 \)[/tex] must be a horizontal line. A horizontal line has an equation of the form [tex]\( y = k \)[/tex], where [tex]\( k \)[/tex] is a constant.
Since the line must pass through the point [tex]\((2, 6)\)[/tex], the value of [tex]\( y \)[/tex] for this point is 6. Therefore, the equation of the line perpendicular to [tex]\( x = 2 \)[/tex] and passing through [tex]\((2, 6)\)[/tex] is:
[tex]\[ y = 6 \][/tex]
2. Line [tex]\( x = 6 \)[/tex]:
Similar to the line [tex]\( x = 2 \)[/tex], [tex]\( x = 6 \)[/tex] is also a vertical line. Thus, the equation of the line perpendicular to [tex]\( x = 6 \)[/tex] and passing through [tex]\((2, 6)\)[/tex] must also be a horizontal line. Since it passes through [tex]\((2, 6)\)[/tex], the equation remains:
[tex]\[ y = 6 \][/tex]
3. Line [tex]\( y = 2 \)[/tex]:
The line [tex]\( y = 2 \)[/tex] is a horizontal line, which means any line perpendicular to [tex]\( y = 2 \)[/tex] must be a vertical line. A vertical line has an equation of the form [tex]\( x = k \)[/tex], where [tex]\( k \)[/tex] is a constant.
Since the line must pass through the point [tex]\((2, 6)\)[/tex], the value of [tex]\( x \)[/tex] for this point is 2. Therefore, the equation of the line perpendicular to [tex]\( y = 2 \)[/tex] and passing through [tex]\((2, 6)\)[/tex] is:
[tex]\[ x = 2 \][/tex]
4. Line [tex]\( y = 6 \)[/tex]:
Similar to the line [tex]\( y = 2 \)[/tex], [tex]\( y = 6 \)[/tex] is also a horizontal line. Thus, the equation of the line perpendicular to [tex]\( y = 6 \)[/tex] and passing through [tex]\((2, 6)\)[/tex] must also be a vertical line. Since it passes through [tex]\((2, 6)\)[/tex], the equation remains:
[tex]\[ x = 2 \][/tex]
In summary, the equations of the lines that are perpendicular to the given lines and pass through the point [tex]\((2, 6)\)[/tex] are:
- For lines [tex]\( x = 2 \)[/tex] and [tex]\( x = 6 \)[/tex]: [tex]\( y = 6 \)[/tex]
- For lines [tex]\( y = 2 \)[/tex] and [tex]\( y = 6 \)[/tex]: [tex]\( x = 2 \)[/tex]
1. Line [tex]\( x = 2 \)[/tex]:
The line [tex]\( x = 2 \)[/tex] is a vertical line, which means any line perpendicular to [tex]\( x = 2 \)[/tex] must be a horizontal line. A horizontal line has an equation of the form [tex]\( y = k \)[/tex], where [tex]\( k \)[/tex] is a constant.
Since the line must pass through the point [tex]\((2, 6)\)[/tex], the value of [tex]\( y \)[/tex] for this point is 6. Therefore, the equation of the line perpendicular to [tex]\( x = 2 \)[/tex] and passing through [tex]\((2, 6)\)[/tex] is:
[tex]\[ y = 6 \][/tex]
2. Line [tex]\( x = 6 \)[/tex]:
Similar to the line [tex]\( x = 2 \)[/tex], [tex]\( x = 6 \)[/tex] is also a vertical line. Thus, the equation of the line perpendicular to [tex]\( x = 6 \)[/tex] and passing through [tex]\((2, 6)\)[/tex] must also be a horizontal line. Since it passes through [tex]\((2, 6)\)[/tex], the equation remains:
[tex]\[ y = 6 \][/tex]
3. Line [tex]\( y = 2 \)[/tex]:
The line [tex]\( y = 2 \)[/tex] is a horizontal line, which means any line perpendicular to [tex]\( y = 2 \)[/tex] must be a vertical line. A vertical line has an equation of the form [tex]\( x = k \)[/tex], where [tex]\( k \)[/tex] is a constant.
Since the line must pass through the point [tex]\((2, 6)\)[/tex], the value of [tex]\( x \)[/tex] for this point is 2. Therefore, the equation of the line perpendicular to [tex]\( y = 2 \)[/tex] and passing through [tex]\((2, 6)\)[/tex] is:
[tex]\[ x = 2 \][/tex]
4. Line [tex]\( y = 6 \)[/tex]:
Similar to the line [tex]\( y = 2 \)[/tex], [tex]\( y = 6 \)[/tex] is also a horizontal line. Thus, the equation of the line perpendicular to [tex]\( y = 6 \)[/tex] and passing through [tex]\((2, 6)\)[/tex] must also be a vertical line. Since it passes through [tex]\((2, 6)\)[/tex], the equation remains:
[tex]\[ x = 2 \][/tex]
In summary, the equations of the lines that are perpendicular to the given lines and pass through the point [tex]\((2, 6)\)[/tex] are:
- For lines [tex]\( x = 2 \)[/tex] and [tex]\( x = 6 \)[/tex]: [tex]\( y = 6 \)[/tex]
- For lines [tex]\( y = 2 \)[/tex] and [tex]\( y = 6 \)[/tex]: [tex]\( x = 2 \)[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.