Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine which set of quantum numbers is invalid, we need to review the rules governing the values of quantum numbers in atomic physics:
1. The principal quantum number [tex]\( n \)[/tex]:
- [tex]\( n \)[/tex] must be a positive integer ([tex]\( n > 0 \)[/tex]).
2. The azimuthal (or angular momentum) quantum number [tex]\( l \)[/tex]:
- [tex]\( l \)[/tex] must be an integer such that [tex]\( 0 \le l < n \)[/tex].
3. The magnetic quantum number [tex]\( m \)[/tex]:
- [tex]\( m \)[/tex] must be an integer such that [tex]\( -l \le m \le l \)[/tex].
Let's examine each given set of quantum numbers according to these rules:
### Set 1: [tex]\( n = 2, l = 1, m = 0 \)[/tex]
- [tex]\( n = 2 \)[/tex] (valid, [tex]\( n > 0 \)[/tex]).
- [tex]\( l = 1 \)[/tex], and since [tex]\(0 \le l < 2\)[/tex], [tex]\( l \)[/tex] is valid.
- [tex]\( m = 0 \)[/tex], and since [tex]\( -1 \le 0 \le 1 \)[/tex], [tex]\( m \)[/tex] is valid.
- Conclusion: This set is valid.
### Set 2: [tex]\( n = 1, l = 0, m = 0 \)[/tex]
- [tex]\( n = 1 \)[/tex] (valid, [tex]\( n > 0 \)[/tex]).
- [tex]\( l = 0 \)[/tex], and since [tex]\(0 \le l < 1\)[/tex], [tex]\( l \)[/tex] is valid.
- [tex]\( m = 0 \)[/tex], and since [tex]\( -0 \le 0 \le 0 \)[/tex], [tex]\( m \)[/tex] is valid.
- Conclusion: This set is valid.
### Set 3: [tex]\( n = 3, l = 3, m = 3 \)[/tex]
- [tex]\( n = 3 \)[/tex] (valid, [tex]\( n > 0 \)[/tex]).
- [tex]\( l = 3 \)[/tex], however, [tex]\(0 \le l < 3\)[/tex] must hold, but [tex]\( l = 3 \)[/tex] is not less than [tex]\( n = 3 \)[/tex].
- Conclusion: This set is invalid due to the value of [tex]\( l \)[/tex].
Thus, the set of quantum numbers [tex]\( n=3, l=3, m=3 \)[/tex] is invalid because [tex]\( l \)[/tex] must be less than [tex]\( n \)[/tex]. Therefore, the invalid set of quantum numbers is set 3.
1. The principal quantum number [tex]\( n \)[/tex]:
- [tex]\( n \)[/tex] must be a positive integer ([tex]\( n > 0 \)[/tex]).
2. The azimuthal (or angular momentum) quantum number [tex]\( l \)[/tex]:
- [tex]\( l \)[/tex] must be an integer such that [tex]\( 0 \le l < n \)[/tex].
3. The magnetic quantum number [tex]\( m \)[/tex]:
- [tex]\( m \)[/tex] must be an integer such that [tex]\( -l \le m \le l \)[/tex].
Let's examine each given set of quantum numbers according to these rules:
### Set 1: [tex]\( n = 2, l = 1, m = 0 \)[/tex]
- [tex]\( n = 2 \)[/tex] (valid, [tex]\( n > 0 \)[/tex]).
- [tex]\( l = 1 \)[/tex], and since [tex]\(0 \le l < 2\)[/tex], [tex]\( l \)[/tex] is valid.
- [tex]\( m = 0 \)[/tex], and since [tex]\( -1 \le 0 \le 1 \)[/tex], [tex]\( m \)[/tex] is valid.
- Conclusion: This set is valid.
### Set 2: [tex]\( n = 1, l = 0, m = 0 \)[/tex]
- [tex]\( n = 1 \)[/tex] (valid, [tex]\( n > 0 \)[/tex]).
- [tex]\( l = 0 \)[/tex], and since [tex]\(0 \le l < 1\)[/tex], [tex]\( l \)[/tex] is valid.
- [tex]\( m = 0 \)[/tex], and since [tex]\( -0 \le 0 \le 0 \)[/tex], [tex]\( m \)[/tex] is valid.
- Conclusion: This set is valid.
### Set 3: [tex]\( n = 3, l = 3, m = 3 \)[/tex]
- [tex]\( n = 3 \)[/tex] (valid, [tex]\( n > 0 \)[/tex]).
- [tex]\( l = 3 \)[/tex], however, [tex]\(0 \le l < 3\)[/tex] must hold, but [tex]\( l = 3 \)[/tex] is not less than [tex]\( n = 3 \)[/tex].
- Conclusion: This set is invalid due to the value of [tex]\( l \)[/tex].
Thus, the set of quantum numbers [tex]\( n=3, l=3, m=3 \)[/tex] is invalid because [tex]\( l \)[/tex] must be less than [tex]\( n \)[/tex]. Therefore, the invalid set of quantum numbers is set 3.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.