Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's analyze the given polynomials and their operations to determine if the results are still polynomials.
Given:
[tex]\[ A = 3x^2(x - 1) \][/tex]
[tex]\[ B = -3x^3 + 4x^2 - 2x + 1 \][/tex]
### Step-by-Step Solution:
1. Addition of [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
[tex]\[ A + B = 3x^2(x - 1) + (-3x^3 + 4x^2 - 2x + 1) \][/tex]
Combining the terms will yield a new expression in terms of [tex]\(x\)[/tex]. Since both [tex]\(A\)[/tex] and [tex]\(B\)[/tex] are polynomials, their sum [tex]\(A + B\)[/tex] is also a polynomial.
2. Subtraction of [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
[tex]\[ A - B = 3x^2(x - 1) - (-3x^3 + 4x^2 - 2x + 1) \][/tex]
Distributing and combining the terms as we did in addition will result in another polynomial. Since subtraction of polynomials results in a polynomial, [tex]\(A - B\)[/tex] is a polynomial.
3. Multiplication of [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
[tex]\[ A \cdot B = 3x^2(x - 1) \cdot (-3x^3 + 4x^2 - 2x + 1) \][/tex]
When multiplying these two polynomials, the product will contain terms that are the product of the terms in [tex]\(A\)[/tex] and [tex]\(B\)[/tex]. Since the product of polynomials is also a polynomial, [tex]\(A \cdot B\)[/tex] is a polynomial.
### Conclusion:
Given the operations we performed:
1. Is the result of [tex]\(A + B\)[/tex] a polynomial? Yes
2. Is the result of [tex]\(A - B\)[/tex] a polynomial? Yes
3. Is the result of [tex]\(A \cdot B\)[/tex] a polynomial? Yes
So, for each question, the correct answer from the drop-down menu is "Yes".
Given:
[tex]\[ A = 3x^2(x - 1) \][/tex]
[tex]\[ B = -3x^3 + 4x^2 - 2x + 1 \][/tex]
### Step-by-Step Solution:
1. Addition of [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
[tex]\[ A + B = 3x^2(x - 1) + (-3x^3 + 4x^2 - 2x + 1) \][/tex]
Combining the terms will yield a new expression in terms of [tex]\(x\)[/tex]. Since both [tex]\(A\)[/tex] and [tex]\(B\)[/tex] are polynomials, their sum [tex]\(A + B\)[/tex] is also a polynomial.
2. Subtraction of [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
[tex]\[ A - B = 3x^2(x - 1) - (-3x^3 + 4x^2 - 2x + 1) \][/tex]
Distributing and combining the terms as we did in addition will result in another polynomial. Since subtraction of polynomials results in a polynomial, [tex]\(A - B\)[/tex] is a polynomial.
3. Multiplication of [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
[tex]\[ A \cdot B = 3x^2(x - 1) \cdot (-3x^3 + 4x^2 - 2x + 1) \][/tex]
When multiplying these two polynomials, the product will contain terms that are the product of the terms in [tex]\(A\)[/tex] and [tex]\(B\)[/tex]. Since the product of polynomials is also a polynomial, [tex]\(A \cdot B\)[/tex] is a polynomial.
### Conclusion:
Given the operations we performed:
1. Is the result of [tex]\(A + B\)[/tex] a polynomial? Yes
2. Is the result of [tex]\(A - B\)[/tex] a polynomial? Yes
3. Is the result of [tex]\(A \cdot B\)[/tex] a polynomial? Yes
So, for each question, the correct answer from the drop-down menu is "Yes".
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.