Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the product of the rational expressions [tex]\(\frac{x+2}{x-4} \cdot \frac{3 x}{x+4}\)[/tex], we follow these steps:
1. Multiply the numerators together:
[tex]\[ (x + 2) \cdot (3x) \][/tex]
2. Multiply the denominators together:
[tex]\[ (x - 4) \cdot (x + 4) \][/tex]
Let's start with the numerator:
[tex]\[ (x + 2)(3x) = 3x(x + 2) = 3x^2 + 6x \][/tex]
Now for the denominator, notice that we have a difference of squares:
[tex]\[ (x - 4)(x + 4) = x^2 - 16 \][/tex]
Putting these together, we get the product of the rational expressions:
[tex]\[ \frac{(x + 2) \cdot (3x)}{(x - 4) \cdot (x + 4)} = \frac{3x^2 + 6x}{x^2 - 16} \][/tex]
Hence, the correct option is:
[tex]\[ \mathbf{A.} \frac{3x^2 + 6x}{x^2 - 16} \][/tex]
1. Multiply the numerators together:
[tex]\[ (x + 2) \cdot (3x) \][/tex]
2. Multiply the denominators together:
[tex]\[ (x - 4) \cdot (x + 4) \][/tex]
Let's start with the numerator:
[tex]\[ (x + 2)(3x) = 3x(x + 2) = 3x^2 + 6x \][/tex]
Now for the denominator, notice that we have a difference of squares:
[tex]\[ (x - 4)(x + 4) = x^2 - 16 \][/tex]
Putting these together, we get the product of the rational expressions:
[tex]\[ \frac{(x + 2) \cdot (3x)}{(x - 4) \cdot (x + 4)} = \frac{3x^2 + 6x}{x^2 - 16} \][/tex]
Hence, the correct option is:
[tex]\[ \mathbf{A.} \frac{3x^2 + 6x}{x^2 - 16} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.