At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To plot the solutions to the inequality [tex]\(\frac{x}{2} > \frac{5}{2}\)[/tex] on a number line, let's go through the steps in detail:
1. Rewrite the Inequality in a Simpler Form:
The given inequality is [tex]\(\frac{x}{2} > \frac{5}{2}\)[/tex].
- To eliminate the fractions, multiply both sides of the inequality by 2.
[tex]\[ 2 \cdot \frac{x}{2} > 2 \cdot \frac{5}{2} \][/tex]
- This simplifies to:
[tex]\[ x > 5 \][/tex]
2. Identify the Solution Set:
The inequality [tex]\(x > 5\)[/tex] means that [tex]\(x\)[/tex] can be any number greater than 5.
3. Determine the Type of Endpoint:
- The inequality is strict (i.e., [tex]\(x\)[/tex] is not equal to 5, but greater than 5).
- This means we will use an open circle to show that 5 is not included in the solution set.
4. Plot on a Number Line:
- Draw a horizontal line to represent the number line.
- Mark the point [tex]\(5\)[/tex] on the number line.
- Place an open circle at [tex]\(5\)[/tex] to indicate that [tex]\(5\)[/tex] is not included.
- Shade the region to the right of [tex]\(5\)[/tex] to show all numbers greater than [tex]\(5\)[/tex].
Here is how the number line looks:
[tex]\[ \begin{array}{c|cccccccccccccccccc} \text{Number line:} &&& & \circ & \longrightarrow & & & & & & & & & & \\ &&& & 5 & & & & & & & & & & & & & & \\ \end{array} \][/tex]
- The open circle at [tex]\(5\)[/tex] indicates that [tex]\(5\)[/tex] itself is not part of the solution.
- The shading to the right of [tex]\(5\)[/tex] shows that all numbers greater than [tex]\(5\)[/tex] are included in the solution set.
1. Rewrite the Inequality in a Simpler Form:
The given inequality is [tex]\(\frac{x}{2} > \frac{5}{2}\)[/tex].
- To eliminate the fractions, multiply both sides of the inequality by 2.
[tex]\[ 2 \cdot \frac{x}{2} > 2 \cdot \frac{5}{2} \][/tex]
- This simplifies to:
[tex]\[ x > 5 \][/tex]
2. Identify the Solution Set:
The inequality [tex]\(x > 5\)[/tex] means that [tex]\(x\)[/tex] can be any number greater than 5.
3. Determine the Type of Endpoint:
- The inequality is strict (i.e., [tex]\(x\)[/tex] is not equal to 5, but greater than 5).
- This means we will use an open circle to show that 5 is not included in the solution set.
4. Plot on a Number Line:
- Draw a horizontal line to represent the number line.
- Mark the point [tex]\(5\)[/tex] on the number line.
- Place an open circle at [tex]\(5\)[/tex] to indicate that [tex]\(5\)[/tex] is not included.
- Shade the region to the right of [tex]\(5\)[/tex] to show all numbers greater than [tex]\(5\)[/tex].
Here is how the number line looks:
[tex]\[ \begin{array}{c|cccccccccccccccccc} \text{Number line:} &&& & \circ & \longrightarrow & & & & & & & & & & \\ &&& & 5 & & & & & & & & & & & & & & \\ \end{array} \][/tex]
- The open circle at [tex]\(5\)[/tex] indicates that [tex]\(5\)[/tex] itself is not part of the solution.
- The shading to the right of [tex]\(5\)[/tex] shows that all numbers greater than [tex]\(5\)[/tex] are included in the solution set.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.