Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the limit of [tex]\(\left( \frac{\ln x}{x} \right)^{1 / \ln x}\)[/tex] as [tex]\(x \to \infty\)[/tex], we need to carefully analyze the behavior of the expression as [tex]\(x\)[/tex] grows larger.
[tex]\[ \lim _{x \rightarrow \infty}\left(\frac{\ln x}{x}\right)^{1 / \ln x} \][/tex]
First, let's denote the given expression as [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = \left( \frac{\ln x}{x} \right)^{1 / \ln x} \][/tex]
Taking the natural logarithm of [tex]\( f(x) \)[/tex] will help simplify the analysis. Let:
[tex]\[ L = \ln(f(x)) = \ln \left( \left( \frac{\ln x}{x} \right)^{1 / \ln x} \right) \][/tex]
Using the logarithm power rule [tex]\( \ln(a^b) = b\ln(a) \)[/tex]:
[tex]\[ L = \frac{1}{\ln x} \ln \left( \frac{\ln x}{x} \right) \][/tex]
Next, we can split the logarithm inside:
[tex]\[ L = \frac{1}{\ln x} \left( \ln (\ln x) - \ln x \right) \][/tex]
Separate the terms in the fraction:
[tex]\[ L = \frac{\ln (\ln x)}{\ln x} - \frac{\ln x}{\ln x} \][/tex]
[tex]\[ L = \frac{\ln (\ln x)}{\ln x} - 1 \][/tex]
Now, we are interested in finding the limit of [tex]\( L \)[/tex] as [tex]\( x \to \infty \)[/tex]:
[tex]\[ \lim_{x \to \infty} L = \lim_{x \to \infty} \left( \frac{\ln (\ln x)}{\ln x} - 1 \right) \][/tex]
Consider each term separately. First, observe the fraction [tex]\(\frac{\ln (\ln x)}{\ln x}\)[/tex]:
As [tex]\( x \to \infty \)[/tex], both [tex]\( \ln x \)[/tex] and [tex]\( \ln(\ln x) \)[/tex] increase, but [tex]\( \ln x \)[/tex] increases much faster than [tex]\( \ln(\ln x) \)[/tex]. Hence, we can conclude:
[tex]\[ \lim_{x \to \infty} \frac{\ln (\ln x)}{\ln x} = 0 \][/tex]
Thus, the limit of [tex]\( L \)[/tex] becomes:
[tex]\[ \lim_{x \to \infty} L = 0 - 1 = -1 \][/tex]
We have determined that:
[tex]\[ \ln(f(x)) \to -1 \][/tex]
Finally, to find the limit of [tex]\( f(x) \)[/tex], we exponentiate both sides:
[tex]\[ f(x) \to e^{-1} \][/tex]
Therefore, the limit is:
[tex]\[ \lim_{x \to \infty} \left( \frac{\ln x}{x} \right)^{1 / \ln x} = e^{-1} \][/tex]
Thus, the answer is:
[tex]\[ e^{-1} \][/tex]
[tex]\[ \lim _{x \rightarrow \infty}\left(\frac{\ln x}{x}\right)^{1 / \ln x} \][/tex]
First, let's denote the given expression as [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = \left( \frac{\ln x}{x} \right)^{1 / \ln x} \][/tex]
Taking the natural logarithm of [tex]\( f(x) \)[/tex] will help simplify the analysis. Let:
[tex]\[ L = \ln(f(x)) = \ln \left( \left( \frac{\ln x}{x} \right)^{1 / \ln x} \right) \][/tex]
Using the logarithm power rule [tex]\( \ln(a^b) = b\ln(a) \)[/tex]:
[tex]\[ L = \frac{1}{\ln x} \ln \left( \frac{\ln x}{x} \right) \][/tex]
Next, we can split the logarithm inside:
[tex]\[ L = \frac{1}{\ln x} \left( \ln (\ln x) - \ln x \right) \][/tex]
Separate the terms in the fraction:
[tex]\[ L = \frac{\ln (\ln x)}{\ln x} - \frac{\ln x}{\ln x} \][/tex]
[tex]\[ L = \frac{\ln (\ln x)}{\ln x} - 1 \][/tex]
Now, we are interested in finding the limit of [tex]\( L \)[/tex] as [tex]\( x \to \infty \)[/tex]:
[tex]\[ \lim_{x \to \infty} L = \lim_{x \to \infty} \left( \frac{\ln (\ln x)}{\ln x} - 1 \right) \][/tex]
Consider each term separately. First, observe the fraction [tex]\(\frac{\ln (\ln x)}{\ln x}\)[/tex]:
As [tex]\( x \to \infty \)[/tex], both [tex]\( \ln x \)[/tex] and [tex]\( \ln(\ln x) \)[/tex] increase, but [tex]\( \ln x \)[/tex] increases much faster than [tex]\( \ln(\ln x) \)[/tex]. Hence, we can conclude:
[tex]\[ \lim_{x \to \infty} \frac{\ln (\ln x)}{\ln x} = 0 \][/tex]
Thus, the limit of [tex]\( L \)[/tex] becomes:
[tex]\[ \lim_{x \to \infty} L = 0 - 1 = -1 \][/tex]
We have determined that:
[tex]\[ \ln(f(x)) \to -1 \][/tex]
Finally, to find the limit of [tex]\( f(x) \)[/tex], we exponentiate both sides:
[tex]\[ f(x) \to e^{-1} \][/tex]
Therefore, the limit is:
[tex]\[ \lim_{x \to \infty} \left( \frac{\ln x}{x} \right)^{1 / \ln x} = e^{-1} \][/tex]
Thus, the answer is:
[tex]\[ e^{-1} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.