Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Which of the following is equal to the rational expression when [tex][tex]$x \neq 5$[/tex][/tex] or -1?

[tex]\[
\frac{(x-7)(x+1)}{(x+1)(x-5)}
\][/tex]

A. [tex][tex]$\frac{x-7}{x+1}$[/tex][/tex]
B. [tex][tex]$\frac{x+1}{x-5}$[/tex][/tex]
C. [tex][tex]$\frac{x-7}{x-5}$[/tex][/tex]
D. [tex][tex]$\frac{x+1}{x-7}$[/tex][/tex]


Sagot :

To determine which of the given options simplifies the rational expression [tex]\(\frac{(x-7)(x+1)}{(x+1)(x-5)}\)[/tex] correctly, we need to follow these steps:

1. Identify and factor the common terms in the numerator and the denominator of the rational expression:
- The numerator is [tex]\((x-7)(x+1)\)[/tex].
- The denominator is [tex]\((x+1)(x-5)\)[/tex].

2. Cancel out the common factors in the numerator and denominator:
- Here, the factor [tex]\((x+1)\)[/tex] is common to both the numerator and denominator.

When [tex]\(x \neq -1\)[/tex], we can safely cancel out the common factor [tex]\((x+1)\)[/tex]:

[tex]\[ \frac{(x-7)(x+1)}{(x+1)(x-5)} = \frac{x-7}{x-5} \][/tex]

3. Check the simplified expression: Now, we have:

[tex]\[ \frac{x-7}{x-5} \][/tex]

4. Match the simplified expression with the given options:
- [tex]\( \frac{x-7}{x+1} \)[/tex] does not match our simplified form.
- [tex]\( \frac{x+1}{x-5} \)[/tex] does not match our simplified form.
- [tex]\( \frac{x-7}{x-5} \)[/tex] matches our simplified form.
- [tex]\( \frac{x+1}{x-7} \)[/tex] does not match our simplified form.

So, the correct choice is:

[tex]\(\boxed{\frac{x-7}{x-5}}\)[/tex]

Therefore, the answer is option C.