Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve this problem, let's analyze what happens to a line segment when it's subject to dilation.
When a line segment [tex]\(\overline{XY}\)[/tex] is dilated from the origin by a scale factor, the coordinates of its endpoints change according to the scale factor. However, certain properties of the line segment remain unchanged under dilation. One of these properties is the slope.
1. Understanding the Slope:
- The slope of a line segment connecting two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by [tex]\(\frac{y_2 - y_1}{x_2 - x_1}\)[/tex].
2. Effect of Dilation on Coordinates:
- When [tex]\(\overline{XY}\)[/tex] is dilated by a scale factor of 1.3 with the origin as the center of dilation, the coordinates of any point [tex]\((x, y)\)[/tex] on the line segment are transformed to [tex]\((1.3x, 1.3y)\)[/tex].
3. Effect of Dilation on the Slope:
- Consider the original points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] on [tex]\(\overline{XY}\)[/tex]. After dilation, these points become [tex]\((1.3x_1, 1.3y_1)\)[/tex] and [tex]\((1.3x_2, 1.3y_2)\)[/tex].
- We calculate the new slope using these transformed points:
[tex]\[ \text{slope of } \overline{X'Y'} = \frac{1.3y_2 - 1.3y_1}{1.3x_2 - 1.3x_1} = \frac{1.3(y_2 - y_1)}{1.3(x_2 - x_1)} = \frac{1.3}{1.3} \cdot \frac{y_2 - y_1}{x_2 - x_1} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
- Notice that the scale factor 1.3 cancels out in the numerator and the denominator, meaning the slope remains unchanged.
Thus, the slope of [tex]\(\overline{X'Y'}\)[/tex] after dilation is exactly the same as the slope of the original segment [tex]\(\overline{XY}\)[/tex], which is [tex]\(m\)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{D. \, m} \][/tex]
When a line segment [tex]\(\overline{XY}\)[/tex] is dilated from the origin by a scale factor, the coordinates of its endpoints change according to the scale factor. However, certain properties of the line segment remain unchanged under dilation. One of these properties is the slope.
1. Understanding the Slope:
- The slope of a line segment connecting two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by [tex]\(\frac{y_2 - y_1}{x_2 - x_1}\)[/tex].
2. Effect of Dilation on Coordinates:
- When [tex]\(\overline{XY}\)[/tex] is dilated by a scale factor of 1.3 with the origin as the center of dilation, the coordinates of any point [tex]\((x, y)\)[/tex] on the line segment are transformed to [tex]\((1.3x, 1.3y)\)[/tex].
3. Effect of Dilation on the Slope:
- Consider the original points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] on [tex]\(\overline{XY}\)[/tex]. After dilation, these points become [tex]\((1.3x_1, 1.3y_1)\)[/tex] and [tex]\((1.3x_2, 1.3y_2)\)[/tex].
- We calculate the new slope using these transformed points:
[tex]\[ \text{slope of } \overline{X'Y'} = \frac{1.3y_2 - 1.3y_1}{1.3x_2 - 1.3x_1} = \frac{1.3(y_2 - y_1)}{1.3(x_2 - x_1)} = \frac{1.3}{1.3} \cdot \frac{y_2 - y_1}{x_2 - x_1} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
- Notice that the scale factor 1.3 cancels out in the numerator and the denominator, meaning the slope remains unchanged.
Thus, the slope of [tex]\(\overline{X'Y'}\)[/tex] after dilation is exactly the same as the slope of the original segment [tex]\(\overline{XY}\)[/tex], which is [tex]\(m\)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{D. \, m} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.