Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's look at how we can approach the given expression step-by-step.
Step 1: Write down the given expression
The given expression is:
[tex]\[ x^2 - 9 \][/tex]
Step 2: Recognize the form of the expression
Notice that the expression [tex]\( x^2 - 9 \)[/tex] is a difference of squares. The difference of squares formula is given by:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]
In this case, [tex]\( a = x \)[/tex] and [tex]\( b = 3 \)[/tex]. So we can rewrite [tex]\( x^2 - 9 \)[/tex] as:
[tex]\[ x^2 - 9 = x^2 - 3^2 \][/tex]
Step 3: Apply the difference of squares formula
Substitute [tex]\( a = x \)[/tex] and [tex]\( b = 3 \)[/tex] into the difference of squares formula:
[tex]\[ x^2 - 3^2 = (x - 3)(x + 3) \][/tex]
Step 4: Write the final simplified expression
Thus, the simplified form of the expression [tex]\( x^2 - 9 \)[/tex] is:
[tex]\[ x^2 - 9 = (x - 3)(x + 3) \][/tex]
This is the factorized form of the given polynomial.
Step 1: Write down the given expression
The given expression is:
[tex]\[ x^2 - 9 \][/tex]
Step 2: Recognize the form of the expression
Notice that the expression [tex]\( x^2 - 9 \)[/tex] is a difference of squares. The difference of squares formula is given by:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]
In this case, [tex]\( a = x \)[/tex] and [tex]\( b = 3 \)[/tex]. So we can rewrite [tex]\( x^2 - 9 \)[/tex] as:
[tex]\[ x^2 - 9 = x^2 - 3^2 \][/tex]
Step 3: Apply the difference of squares formula
Substitute [tex]\( a = x \)[/tex] and [tex]\( b = 3 \)[/tex] into the difference of squares formula:
[tex]\[ x^2 - 3^2 = (x - 3)(x + 3) \][/tex]
Step 4: Write the final simplified expression
Thus, the simplified form of the expression [tex]\( x^2 - 9 \)[/tex] is:
[tex]\[ x^2 - 9 = (x - 3)(x + 3) \][/tex]
This is the factorized form of the given polynomial.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.