At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Newton's second law of motion can be expressed in terms of momentum. To understand this, let's recall that momentum ([tex]\( p \)[/tex]) is defined as the product of mass ([tex]\( m \)[/tex]) and velocity ([tex]\( v \)[/tex]):
[tex]\[ p = mv \][/tex]
Newton's second law states that the sum of all external forces ([tex]\( \sum F \)[/tex]) acting on a body is equal to the mass ([tex]\( m \)[/tex]) of the body times its acceleration ([tex]\( a \)[/tex]):
[tex]\[ \sum F = ma \][/tex]
Acceleration ([tex]\( a \)[/tex]) can be expressed as the rate of change of velocity over time ([tex]\( t \)[/tex]):
[tex]\[ a = \frac{dv}{dt} \][/tex]
Substituting this expression for acceleration in Newton's second law gives:
[tex]\[ \sum F = m \frac{dv}{dt} \][/tex]
Rewriting this, we get:
[tex]\[ \sum F = \frac{d(mv)}{dt} \][/tex]
Since [tex]\( mv \)[/tex] is momentum ([tex]\( p \)[/tex]), the equation becomes:
[tex]\[ \sum F = \frac{dp}{dt} \][/tex]
This means that the sum of all external forces ([tex]\( \sum F \)[/tex]) acting on an object is equal to the rate of change of the object's momentum ([tex]\( \frac{dp}{dt} \)[/tex]).
Hence, the correct description of Newton's second law in terms of change in momentum is:
The sum of all external forces acting on the object is equal to the rate of change in the momentum of the object.
[tex]\[ p = mv \][/tex]
Newton's second law states that the sum of all external forces ([tex]\( \sum F \)[/tex]) acting on a body is equal to the mass ([tex]\( m \)[/tex]) of the body times its acceleration ([tex]\( a \)[/tex]):
[tex]\[ \sum F = ma \][/tex]
Acceleration ([tex]\( a \)[/tex]) can be expressed as the rate of change of velocity over time ([tex]\( t \)[/tex]):
[tex]\[ a = \frac{dv}{dt} \][/tex]
Substituting this expression for acceleration in Newton's second law gives:
[tex]\[ \sum F = m \frac{dv}{dt} \][/tex]
Rewriting this, we get:
[tex]\[ \sum F = \frac{d(mv)}{dt} \][/tex]
Since [tex]\( mv \)[/tex] is momentum ([tex]\( p \)[/tex]), the equation becomes:
[tex]\[ \sum F = \frac{dp}{dt} \][/tex]
This means that the sum of all external forces ([tex]\( \sum F \)[/tex]) acting on an object is equal to the rate of change of the object's momentum ([tex]\( \frac{dp}{dt} \)[/tex]).
Hence, the correct description of Newton's second law in terms of change in momentum is:
The sum of all external forces acting on the object is equal to the rate of change in the momentum of the object.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.