Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

What is the equation of a line that passes through [tex][tex]$(8, -5)$[/tex][/tex] and is parallel to the graphed line?

A. [tex][tex]$y = \frac{3}{4} x + 1$[/tex][/tex]
B. [tex][tex]$y = \frac{3}{4} x - 11$[/tex][/tex]
C. [tex][tex]$y = -\frac{4}{3} x + \frac{17}{3}$[/tex][/tex]
D. [tex][tex]$y = -\frac{4}{3} x - \frac{47}{3}$[/tex][/tex]


Sagot :

To determine the equation of the line that passes through the point [tex]\((8, -5)\)[/tex] and is parallel to one of the given lines, we need to follow these steps:

1. Identify the slopes of the given equations:
- The slope of [tex]\(y = \frac{3}{4} x + 1\)[/tex] is [tex]\(\frac{3}{4}\)[/tex].
- The slope of [tex]\(y = \frac{3}{4} x - 11\)[/tex] is [tex]\(\frac{3}{4}\)[/tex].
- The slope of [tex]\(y = -\frac{4}{3} x + \frac{17}{3}\)[/tex] is [tex]\(-\frac{4}{3}\)[/tex].
- The slope of [tex]\(y = -\frac{4}{3} x - \frac{47}{3}\)[/tex] is [tex]\(-\frac{4}{3}\)[/tex].

2. Determine the equations of the lines through [tex]\((8, -5)\)[/tex] with the same slopes:

For lines with slope [tex]\(\frac{3}{4}\)[/tex]:
- Use the point-slope form: [tex]\(y = mx + b\)[/tex].
- Plug in the point [tex]\((8, -5)\)[/tex] and the slope [tex]\(\frac{3}{4}\)[/tex]:
[tex]\[ -5 = \frac{3}{4} \cdot 8 + b \][/tex]
- Solve for [tex]\(b\)[/tex]:
[tex]\[ -5 = 6 + b \implies b = -11 \][/tex]
- Therefore, the equation of the line is [tex]\(y = \frac{3}{4} x - 11\)[/tex].

For lines with slope [tex]\(-\frac{4}{3}\)[/tex]:
- Use the point-slope form: [tex]\(y = mx + b\)[/tex].
- Plug in the point [tex]\((8, -5)\)[/tex] and the slope [tex]\(-\frac{4}{3}\)[/tex]:
[tex]\[ -5 = -\frac{4}{3} \cdot 8 + b \][/tex]
- Solve for [tex]\(b\)[/tex]:
[tex]\[ -5 = -\frac{32}{3} + b \implies -5 + \frac{32}{3} = b \implies b = \frac{-15 + 32}{3} = \frac{17}{3} \][/tex]
- Therefore, the equation of the line is [tex]\(y = -\frac{4}{3} x + \frac{17}{3}\)[/tex].

3. Match these equations with the options provided:
- Option A [tex]\(y = \frac{3}{4} x + 1\)[/tex] does not match.
- Option B [tex]\(y = \frac{3}{4} x - 11\)[/tex] matches our first derived equation.
- Option C [tex]\(y = -\frac{4}{3} x + \frac{17}{3}\)[/tex] matches our second derived equation.
- Option D [tex]\(y = -\frac{4}{3} x - \frac{47}{3}\)[/tex] does not match.

There are two correct answers for the given problem, which are:

- [tex]\(y = \frac{3}{4} x - 11\)[/tex] (Option B)
- [tex]\(y = -\frac{4}{3} x + \frac{17}{3}\)[/tex] (Option C)

Either of these lines satisfies the conditions of passing through the point [tex]\((8, -5)\)[/tex] and being parallel to one of the given lines.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.