Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which exponential function has an [tex]\(x\)[/tex]-intercept, we need to find the [tex]\(x\)[/tex]-intercept for each function. An [tex]\(x\)[/tex]-intercept is a point where the function value [tex]\(f(x)\)[/tex] is equal to 0. Let's analyze each function one by one:
### Function A: [tex]\(f(x) = 100^{x-5} - 1\)[/tex]
To find the [tex]\(x\)[/tex]-intercept, set [tex]\(f(x) = 0\)[/tex]:
[tex]\[ 100^{x-5} - 1 = 0 \][/tex]
[tex]\[ 100^{x-5} = 1 \][/tex]
For [tex]\(100^{x-5}\)[/tex] to be equal to 1, the exponent must be 0 because any positive base raised to the power of 0 is 1:
[tex]\[ x - 5 = 0 \][/tex]
[tex]\[ x = 5 \][/tex]
Therefore, function A has an [tex]\(x\)[/tex]-intercept at [tex]\(x = 5\)[/tex].
### Function B: [tex]\(f(x) = 3^{x-4} + 2\)[/tex]
To find the [tex]\(x\)[/tex]-intercept, set [tex]\(f(x) = 0\)[/tex]:
[tex]\[ 3^{x-4} + 2 = 0 \][/tex]
[tex]\[ 3^{x-4} = -2 \][/tex]
This equation has no solution because [tex]\(3^{x-4}\)[/tex] is always positive for any real number [tex]\(x\)[/tex] (an exponential function with a positive base cannot yield a negative value).
### Function C: [tex]\(f(x) = 7^{x-1} + 1\)[/tex]
To find the [tex]\(x\)[/tex]-intercept, set [tex]\(f(x) = 0\)[/tex]:
[tex]\[ 7^{x-1} + 1 = 0 \][/tex]
[tex]\[ 7^{x-1} = -1 \][/tex]
This equation has no solution because [tex]\(7^{x-1}\)[/tex] is always positive for any real number [tex]\(x\)[/tex] (similarly, an exponential function with a positive base cannot yield a negative value).
### Function D: [tex]\(f(x) = -8^{x+1} - 3\)[/tex]
To find the [tex]\(x\)[/tex]-intercept, set [tex]\(f(x) = 0\)[/tex]:
[tex]\[ -8^{x+1} - 3 = 0 \][/tex]
[tex]\[ -8^{x+1} = 3 \][/tex]
[tex]\[ 8^{x+1} = -3 \][/tex]
This equation has no solution because [tex]\(8^{x+1}\)[/tex] is always positive for any real number [tex]\(x\)[/tex] (likewise, an exponential function with a positive base cannot yield a negative value).
After evaluating each function, we see that only Function A: [tex]\(f(x) = 100^{x-5} - 1\)[/tex] has an [tex]\(x\)[/tex]-intercept. Therefore, the correct answer is:
A. [tex]\(f(x)=100^{x-5}-1\)[/tex]
### Function A: [tex]\(f(x) = 100^{x-5} - 1\)[/tex]
To find the [tex]\(x\)[/tex]-intercept, set [tex]\(f(x) = 0\)[/tex]:
[tex]\[ 100^{x-5} - 1 = 0 \][/tex]
[tex]\[ 100^{x-5} = 1 \][/tex]
For [tex]\(100^{x-5}\)[/tex] to be equal to 1, the exponent must be 0 because any positive base raised to the power of 0 is 1:
[tex]\[ x - 5 = 0 \][/tex]
[tex]\[ x = 5 \][/tex]
Therefore, function A has an [tex]\(x\)[/tex]-intercept at [tex]\(x = 5\)[/tex].
### Function B: [tex]\(f(x) = 3^{x-4} + 2\)[/tex]
To find the [tex]\(x\)[/tex]-intercept, set [tex]\(f(x) = 0\)[/tex]:
[tex]\[ 3^{x-4} + 2 = 0 \][/tex]
[tex]\[ 3^{x-4} = -2 \][/tex]
This equation has no solution because [tex]\(3^{x-4}\)[/tex] is always positive for any real number [tex]\(x\)[/tex] (an exponential function with a positive base cannot yield a negative value).
### Function C: [tex]\(f(x) = 7^{x-1} + 1\)[/tex]
To find the [tex]\(x\)[/tex]-intercept, set [tex]\(f(x) = 0\)[/tex]:
[tex]\[ 7^{x-1} + 1 = 0 \][/tex]
[tex]\[ 7^{x-1} = -1 \][/tex]
This equation has no solution because [tex]\(7^{x-1}\)[/tex] is always positive for any real number [tex]\(x\)[/tex] (similarly, an exponential function with a positive base cannot yield a negative value).
### Function D: [tex]\(f(x) = -8^{x+1} - 3\)[/tex]
To find the [tex]\(x\)[/tex]-intercept, set [tex]\(f(x) = 0\)[/tex]:
[tex]\[ -8^{x+1} - 3 = 0 \][/tex]
[tex]\[ -8^{x+1} = 3 \][/tex]
[tex]\[ 8^{x+1} = -3 \][/tex]
This equation has no solution because [tex]\(8^{x+1}\)[/tex] is always positive for any real number [tex]\(x\)[/tex] (likewise, an exponential function with a positive base cannot yield a negative value).
After evaluating each function, we see that only Function A: [tex]\(f(x) = 100^{x-5} - 1\)[/tex] has an [tex]\(x\)[/tex]-intercept. Therefore, the correct answer is:
A. [tex]\(f(x)=100^{x-5}-1\)[/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.