At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Which answer describes the transformation of [tex][tex]$f(x)=x^2-1$[/tex][/tex] to [tex][tex]$g(x)=(x-1)^2-1$[/tex][/tex]?

A. a horizontal translation 1 unit to the right
B. a vertical translation 1 unit up
C. a vertical translation 1 unit down
D. a horizontal translation 1 unit to the left


Sagot :

To determine the transformation that takes [tex]\( f(x) = x^2 - 1 \)[/tex] to [tex]\( g(x) = (x-1)^2 - 1 \)[/tex], we need to analyze how the form of the function changes.

1. Start with the original function:
[tex]\[ f(x) = x^2 - 1 \][/tex]

2. Now, consider the transformed function:
[tex]\[ g(x) = (x-1)^2 - 1 \][/tex]

3. Notice that the term [tex]\((x-1)\)[/tex] inside the square in [tex]\(g(x)\)[/tex] indicates a horizontal shift. To identify the direction of this shift, recall that:
- [tex]\( f(x+h) \)[/tex] represents a horizontal translation [tex]\( h \)[/tex] units to the left.
- [tex]\( f(x-h) \)[/tex] represents a horizontal translation [tex]\( h \)[/tex] units to the right.

4. The expression [tex]\((x-1)\)[/tex] corresponds to [tex]\( x \)[/tex] having 1 subtracted from it, which matches the format [tex]\( x-h \)[/tex].
[tex]\[ (x-1) \Rightarrow x - 1 \][/tex]

5. Therefore, the transformation [tex]\( g(x) = (x-1)^2 - 1 \)[/tex] implies a horizontal shift 1 unit to the right of the [tex]\( x \)[/tex]-value in the argument of the original function [tex]\( f(x) \)[/tex].

6. The rest of the function, [tex]\(- 1\)[/tex], remains unchanged, indicating no vertical shift occurs.

Thus, the correct answer that describes the transformation of [tex]\( f(x) = x^2 - 1 \)[/tex] to [tex]\( g(x) = (x-1)^2 - 1 \)[/tex] is:
[tex]\[ \text{a horizontal translation 1 unit to the right} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.