Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To simplify the expression [tex]\(\frac{12}{\sqrt{2}}+\sqrt{18}\)[/tex] into the form [tex]\(b \sqrt{2}\)[/tex], where [tex]\(b\)[/tex] is an integer, we can follow these steps:
1. Rationalize the denominator of [tex]\(\frac{12}{\sqrt{2}}\)[/tex]:
To simplify [tex]\(\frac{12}{\sqrt{2}}\)[/tex], we multiply both the numerator and denominator by [tex]\(\sqrt{2}\)[/tex] to rationalize the denominator:
[tex]\[ \frac{12}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{12\sqrt{2}}{2} = 6\sqrt{2} \][/tex]
2. Simplify [tex]\(\sqrt{18}\)[/tex]:
The square root of 18 can be broken down into its prime factors:
[tex]\[ \sqrt{18} = \sqrt{2 \times 9} = \sqrt{2} \times \sqrt{9} = \sqrt{2} \times 3 = 3\sqrt{2} \][/tex]
3. Add the simplified terms together:
Combining the two parts we have:
[tex]\[ 6\sqrt{2} + 3\sqrt{2} \][/tex]
Since both terms have [tex]\(\sqrt{2}\)[/tex] as a common factor, we can add the coefficients:
[tex]\[ 6\sqrt{2} + 3\sqrt{2} = (6 + 3)\sqrt{2} = 9\sqrt{2} \][/tex]
Hence, the expression [tex]\(\frac{12}{\sqrt{2}}+\sqrt{18}\)[/tex] simplifies to [tex]\(9\sqrt{2}\)[/tex]. Therefore, [tex]\(b\)[/tex] is [tex]\(9\)[/tex].
1. Rationalize the denominator of [tex]\(\frac{12}{\sqrt{2}}\)[/tex]:
To simplify [tex]\(\frac{12}{\sqrt{2}}\)[/tex], we multiply both the numerator and denominator by [tex]\(\sqrt{2}\)[/tex] to rationalize the denominator:
[tex]\[ \frac{12}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{12\sqrt{2}}{2} = 6\sqrt{2} \][/tex]
2. Simplify [tex]\(\sqrt{18}\)[/tex]:
The square root of 18 can be broken down into its prime factors:
[tex]\[ \sqrt{18} = \sqrt{2 \times 9} = \sqrt{2} \times \sqrt{9} = \sqrt{2} \times 3 = 3\sqrt{2} \][/tex]
3. Add the simplified terms together:
Combining the two parts we have:
[tex]\[ 6\sqrt{2} + 3\sqrt{2} \][/tex]
Since both terms have [tex]\(\sqrt{2}\)[/tex] as a common factor, we can add the coefficients:
[tex]\[ 6\sqrt{2} + 3\sqrt{2} = (6 + 3)\sqrt{2} = 9\sqrt{2} \][/tex]
Hence, the expression [tex]\(\frac{12}{\sqrt{2}}+\sqrt{18}\)[/tex] simplifies to [tex]\(9\sqrt{2}\)[/tex]. Therefore, [tex]\(b\)[/tex] is [tex]\(9\)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.