Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

\begin{tabular}{|cc}
11 & [tex][tex]$1 \frac{2}{9}$[/tex][/tex] \\
21 & [tex][tex]$2 \frac{1}{3}$[/tex][/tex] \\
\hline 45 & 5 \\
\hline
\end{tabular}

Find the constant of proportionality [tex][tex]$(r)$[/tex][/tex] in the equation [tex][tex]$y=r x$[/tex][/tex].

[tex]r=\square[/tex]


Sagot :

To determine the constant of proportionality [tex]\( r \)[/tex] in the equation [tex]\( y = rx \)[/tex], we start by looking at the given pairs of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values. We will use these pairs to find [tex]\( r \)[/tex].

Let's denote the pairs as follows:
- Pair 1: [tex]\( (x_1, y_1) = \left( 11, 1 + \frac{2}{9} \right) \)[/tex]
- Pair 2: [tex]\( (x_2, y_2) = \left( 21, 2 + \frac{1}{3} \right) \)[/tex]
- Pair 3: [tex]\( (x_3, y_3) = \left( 45, 5 \right) \)[/tex]

First, we convert the mixed numbers into improper fractions or decimal form to make the calculations easier:
- [tex]\( y_1 = 1 + \frac{2}{9} = 1 + 0.2222\overline{2} = 1.2222\overline{2} \)[/tex]
- [tex]\( y_2 = 2 + \frac{1}{3} = 2 + 0.3333\overline{3} = 2.3333\overline{3} \)[/tex]
- [tex]\( y_3 = 5 \)[/tex]

Now we calculate [tex]\( r \)[/tex] using each pair by dividing [tex]\( y \)[/tex] by [tex]\( x \)[/tex]:

1. For the first pair [tex]\((x_1, y_1)\)[/tex]:
[tex]\[ r_1 = \frac{y_1}{x_1} = \frac{1.2222\overline{2}}{11} = 0.11111111111111112 \][/tex]

2. For the second pair [tex]\((x_2, y_2)\)[/tex]:
[tex]\[ r_2 = \frac{y_2}{x_2} = \frac{2.3333\overline{3}}{21} = 0.11111111111111112 \][/tex]

3. For the third pair [tex]\((x_3, y_3)\)[/tex]:
[tex]\[ r_3 = \frac{y_3}{x_3} = \frac{5}{45} = 0.1111111111111111 \][/tex]

Note that in a perfectly proportional relationship, [tex]\( r \)[/tex] should be constant across all pairs. Here, we can observe that:
- [tex]\( r_1 = 0.11111111111111112 \)[/tex]
- [tex]\( r_2 = 0.11111111111111112 \)[/tex]
- [tex]\( r_3 = 0.1111111111111111 \)[/tex]

The values [tex]\( r_1 \)[/tex], [tex]\( r_2 \)[/tex], and [tex]\( r_3 \)[/tex] are extremely close to each other, considering minor computational differences.

Therefore, the constant of proportionality [tex]\( r \)[/tex] is approximately:

[tex]\[ r = 0.1111111111111111 \][/tex]

So, [tex]\( r \approx 0.1111 \)[/tex] (rounded to four decimal places).