Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the equation of the line that is perpendicular to the given line [tex]\( y - 4 = -\frac{2}{3}(x - 6) \)[/tex] and passes through the point [tex]\((-2, -2)\)[/tex], let's follow these steps:
1. Convert the given line equation to slope-intercept form:
The given line is written in point-slope form:
[tex]\[ y - 4 = -\frac{2}{3}(x - 6) \][/tex]
Simplify it to get the slope-intercept form [tex]\( y = mx + b \)[/tex]:
[tex]\[ y - 4 = -\frac{2}{3}x + 4 \quad \Rightarrow \quad y = -\frac{2}{3}x + 4 + 4 \quad \Rightarrow \quad y = -\frac{2}{3}x + 8 \][/tex]
Therefore, the slope [tex]\( m \)[/tex] of the given line is [tex]\(-\frac{2}{3}\)[/tex].
2. Determine the slope of the perpendicular line:
The slope of a line perpendicular to another line is the negative reciprocal of the original line's slope.
[tex]\[ \text{Slope of the original line} = -\frac{2}{3} \quad \Rightarrow \quad \text{Slope of the perpendicular line} = \frac{3}{2} \][/tex]
3. Use the point-slope form to find the equation of the perpendicular line:
We know the perpendicular line passes through the point [tex]\((-2, -2)\)[/tex] and has a slope of [tex]\(\frac{3}{2}\)[/tex]. The point-slope form of a line equation is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Substituting the known values [tex]\(x_1 = -2, y_1 = -2, m = \frac{3}{2}\)[/tex]:
[tex]\[ y - (-2) = \frac{3}{2}(x - (-2)) \quad \Rightarrow \quad y + 2 = \frac{3}{2}(x + 2) \][/tex]
Simplify:
[tex]\[ y + 2 = \frac{3}{2}x + 3 \quad \Rightarrow \quad y = \frac{3}{2}x + 3 - 2 \quad \Rightarrow \quad y = \frac{3}{2}x + 1 \][/tex]
Thus, the equation of the line that is perpendicular to [tex]\( y - 4 = -\frac{2}{3}(x - 6) \)[/tex] and passes through [tex]\((-2, -2)\)[/tex] is:
[tex]\[ y = \frac{3}{2} x + 1 \][/tex]
The correct choice is:
[tex]\[ \boxed{y = \frac{3}{2} x + 1} \][/tex]
1. Convert the given line equation to slope-intercept form:
The given line is written in point-slope form:
[tex]\[ y - 4 = -\frac{2}{3}(x - 6) \][/tex]
Simplify it to get the slope-intercept form [tex]\( y = mx + b \)[/tex]:
[tex]\[ y - 4 = -\frac{2}{3}x + 4 \quad \Rightarrow \quad y = -\frac{2}{3}x + 4 + 4 \quad \Rightarrow \quad y = -\frac{2}{3}x + 8 \][/tex]
Therefore, the slope [tex]\( m \)[/tex] of the given line is [tex]\(-\frac{2}{3}\)[/tex].
2. Determine the slope of the perpendicular line:
The slope of a line perpendicular to another line is the negative reciprocal of the original line's slope.
[tex]\[ \text{Slope of the original line} = -\frac{2}{3} \quad \Rightarrow \quad \text{Slope of the perpendicular line} = \frac{3}{2} \][/tex]
3. Use the point-slope form to find the equation of the perpendicular line:
We know the perpendicular line passes through the point [tex]\((-2, -2)\)[/tex] and has a slope of [tex]\(\frac{3}{2}\)[/tex]. The point-slope form of a line equation is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Substituting the known values [tex]\(x_1 = -2, y_1 = -2, m = \frac{3}{2}\)[/tex]:
[tex]\[ y - (-2) = \frac{3}{2}(x - (-2)) \quad \Rightarrow \quad y + 2 = \frac{3}{2}(x + 2) \][/tex]
Simplify:
[tex]\[ y + 2 = \frac{3}{2}x + 3 \quad \Rightarrow \quad y = \frac{3}{2}x + 3 - 2 \quad \Rightarrow \quad y = \frac{3}{2}x + 1 \][/tex]
Thus, the equation of the line that is perpendicular to [tex]\( y - 4 = -\frac{2}{3}(x - 6) \)[/tex] and passes through [tex]\((-2, -2)\)[/tex] is:
[tex]\[ y = \frac{3}{2} x + 1 \][/tex]
The correct choice is:
[tex]\[ \boxed{y = \frac{3}{2} x + 1} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.