Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the nature of the roots for the quadratic equation [tex]\(5x^2 + 3x = -8\)[/tex], we first rewrite it in the standard form [tex]\(ax^2 + bx + c = 0\)[/tex].
1. Rewrite the equation:
[tex]\[5x^2 + 3x + 8 = 0\][/tex]
2. Identify the coefficients:
[tex]\[a = 5\][/tex]
[tex]\[b = 3\][/tex]
[tex]\[c = 8\][/tex]
3. Calculate the discriminant [tex]\(\Delta\)[/tex]. The discriminant of a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] is given by the formula:
[tex]\[\Delta = b^2 - 4ac\][/tex]
Substituting the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
[tex]\[\Delta = 3^2 - 4 \cdot 5 \cdot 8\][/tex]
[tex]\[\Delta = 9 - 160\][/tex]
[tex]\[\Delta = -151\][/tex]
4. Determine the nature of the roots based on the discriminant:
- If [tex]\(\Delta > 0\)[/tex], the roots are real and different.
- If [tex]\(\Delta = 0\)[/tex], the roots are real and equal.
- If [tex]\(\Delta < 0\)[/tex], the roots are imaginary.
Since [tex]\(\Delta = -151\)[/tex] and [tex]\(\Delta < 0\)[/tex], the roots of the quadratic equation [tex]\(5x^2 + 3x + 8 = 0\)[/tex] are imaginary.
Thus, the nature of the roots of [tex]\(5 x^2 + 3 x = -8\)[/tex] is:
Imaginary roots.
1. Rewrite the equation:
[tex]\[5x^2 + 3x + 8 = 0\][/tex]
2. Identify the coefficients:
[tex]\[a = 5\][/tex]
[tex]\[b = 3\][/tex]
[tex]\[c = 8\][/tex]
3. Calculate the discriminant [tex]\(\Delta\)[/tex]. The discriminant of a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] is given by the formula:
[tex]\[\Delta = b^2 - 4ac\][/tex]
Substituting the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
[tex]\[\Delta = 3^2 - 4 \cdot 5 \cdot 8\][/tex]
[tex]\[\Delta = 9 - 160\][/tex]
[tex]\[\Delta = -151\][/tex]
4. Determine the nature of the roots based on the discriminant:
- If [tex]\(\Delta > 0\)[/tex], the roots are real and different.
- If [tex]\(\Delta = 0\)[/tex], the roots are real and equal.
- If [tex]\(\Delta < 0\)[/tex], the roots are imaginary.
Since [tex]\(\Delta = -151\)[/tex] and [tex]\(\Delta < 0\)[/tex], the roots of the quadratic equation [tex]\(5x^2 + 3x + 8 = 0\)[/tex] are imaginary.
Thus, the nature of the roots of [tex]\(5 x^2 + 3 x = -8\)[/tex] is:
Imaginary roots.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.