At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine how much energy is required to boil [tex]\( 100 \, \text{mL} \)[/tex] of water, we need to perform the following steps:
1. Convert the volume of water to mass: Given that the density of water is [tex]\( 1 \, \text{g/mL} \)[/tex], the mass [tex]\( m \)[/tex] of [tex]\( 100 \, \text{mL} \)[/tex] of water can be calculated as:
[tex]\[ m = 100 \, \text{mL} \times 1 \, \frac{\text{g}}{\text{mL}} = 100 \, \text{g} \][/tex]
2. Convert mass of water to moles: Using the molar mass of water, [tex]\( 18.02 \, \text{g/mol} \)[/tex], we can calculate the number of moles [tex]\( n \)[/tex] of water in [tex]\( 100 \, \text{g} \)[/tex]:
[tex]\[ n = \frac{100 \, \text{g}}{18.02 \, \text{g/mol}} \approx 5.55 \, \text{mol} \][/tex]
3. Calculate energy required for different constants:
- For Option A: The energy per mole is [tex]\( 4.186 \, \text{kJ/mol} \)[/tex], so the total energy [tex]\( E_A \)[/tex] is:
[tex]\[ E_A = n \times 4.186 \, \frac{\text{kJ}}{\text{mol}} \approx 5.55 \, \text{mol} \times 4.186 \, \frac{\text{kJ}}{\text{mol}} = 23.23 \, \text{kJ} \][/tex]
- For Option B: The energy per mole is [tex]\( 6.03 \, \text{kJ/mol} \)[/tex], so the total energy [tex]\( E_B \)[/tex] is:
[tex]\[ E_B = n \times 6.03 \, \frac{\text{kJ}}{\text{mol}} \approx 5.55 \, \text{mol} \times 6.03 \, \frac{\text{kJ}}{\text{mol}} = 33.46 \, \text{kJ} \][/tex]
- For Option C: The energy per mole is [tex]\( -285.83 \, \text{kJ/mol} \)[/tex], so the total energy [tex]\( E_C \)[/tex] is:
[tex]\[ E_C = n \times (-285.83) \, \frac{\text{kJ}}{\text{mol}} \approx 5.55 \, \text{mol} \times (-285.83) \, \frac{\text{kJ}}{\text{mol}} = -1586.18 \, \text{kJ} \][/tex]
- For Option D: The energy per mole is [tex]\( 40.65 \, \text{kJ/mol} \)[/tex], so the total energy [tex]\( E_D \)[/tex] is:
[tex]\[ E_D = n \times 40.65 \, \frac{\text{kJ}}{\text{mol}} \approx 5.55 \, \text{mol} \times 40.65 \, \frac{\text{kJ}}{\text{mol}} = 225.58 \, \text{kJ} \][/tex]
Based on the results of our calculations:
- [tex]\( E_A \approx 23.23 \, \text{kJ} \)[/tex]
- [tex]\( E_B \approx 33.46 \, \text{kJ} \)[/tex]
- [tex]\( E_C \approx -1586.18 \, \text{kJ} \)[/tex]
- [tex]\( E_D \approx 225.58 \, \text{kJ} \)[/tex]
The correct option, which closely matches our calculated energy required to boil [tex]\( 100 \, \text{mL} \)[/tex] of water, is:
D. [tex]$100 \, \text{mL} \times \frac{1 \, \text{g}}{1 \, \text{mL}} \times \frac{1 \, \text{mol}}{18.02 \, \text{g}} \times 40.65 \, \text{kJ/mol} = 226 \, \text{kJ}$[/tex]
1. Convert the volume of water to mass: Given that the density of water is [tex]\( 1 \, \text{g/mL} \)[/tex], the mass [tex]\( m \)[/tex] of [tex]\( 100 \, \text{mL} \)[/tex] of water can be calculated as:
[tex]\[ m = 100 \, \text{mL} \times 1 \, \frac{\text{g}}{\text{mL}} = 100 \, \text{g} \][/tex]
2. Convert mass of water to moles: Using the molar mass of water, [tex]\( 18.02 \, \text{g/mol} \)[/tex], we can calculate the number of moles [tex]\( n \)[/tex] of water in [tex]\( 100 \, \text{g} \)[/tex]:
[tex]\[ n = \frac{100 \, \text{g}}{18.02 \, \text{g/mol}} \approx 5.55 \, \text{mol} \][/tex]
3. Calculate energy required for different constants:
- For Option A: The energy per mole is [tex]\( 4.186 \, \text{kJ/mol} \)[/tex], so the total energy [tex]\( E_A \)[/tex] is:
[tex]\[ E_A = n \times 4.186 \, \frac{\text{kJ}}{\text{mol}} \approx 5.55 \, \text{mol} \times 4.186 \, \frac{\text{kJ}}{\text{mol}} = 23.23 \, \text{kJ} \][/tex]
- For Option B: The energy per mole is [tex]\( 6.03 \, \text{kJ/mol} \)[/tex], so the total energy [tex]\( E_B \)[/tex] is:
[tex]\[ E_B = n \times 6.03 \, \frac{\text{kJ}}{\text{mol}} \approx 5.55 \, \text{mol} \times 6.03 \, \frac{\text{kJ}}{\text{mol}} = 33.46 \, \text{kJ} \][/tex]
- For Option C: The energy per mole is [tex]\( -285.83 \, \text{kJ/mol} \)[/tex], so the total energy [tex]\( E_C \)[/tex] is:
[tex]\[ E_C = n \times (-285.83) \, \frac{\text{kJ}}{\text{mol}} \approx 5.55 \, \text{mol} \times (-285.83) \, \frac{\text{kJ}}{\text{mol}} = -1586.18 \, \text{kJ} \][/tex]
- For Option D: The energy per mole is [tex]\( 40.65 \, \text{kJ/mol} \)[/tex], so the total energy [tex]\( E_D \)[/tex] is:
[tex]\[ E_D = n \times 40.65 \, \frac{\text{kJ}}{\text{mol}} \approx 5.55 \, \text{mol} \times 40.65 \, \frac{\text{kJ}}{\text{mol}} = 225.58 \, \text{kJ} \][/tex]
Based on the results of our calculations:
- [tex]\( E_A \approx 23.23 \, \text{kJ} \)[/tex]
- [tex]\( E_B \approx 33.46 \, \text{kJ} \)[/tex]
- [tex]\( E_C \approx -1586.18 \, \text{kJ} \)[/tex]
- [tex]\( E_D \approx 225.58 \, \text{kJ} \)[/tex]
The correct option, which closely matches our calculated energy required to boil [tex]\( 100 \, \text{mL} \)[/tex] of water, is:
D. [tex]$100 \, \text{mL} \times \frac{1 \, \text{g}}{1 \, \text{mL}} \times \frac{1 \, \text{mol}}{18.02 \, \text{g}} \times 40.65 \, \text{kJ/mol} = 226 \, \text{kJ}$[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.