Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine which of the given expressions represents the volume of a cylinder, we must recall the formula for the volume of a cylinder. The volume [tex]\( V \)[/tex] of a cylinder with radius [tex]\( r \)[/tex] and height [tex]\( h \)[/tex] is given by:
[tex]\[ V = \pi r^2 h \][/tex]
In this context, suppose the radius [tex]\( r \)[/tex] is denoted by [tex]\( x \)[/tex] and the height [tex]\( h \)[/tex] is also denoted by [tex]\( x \)[/tex]. Then, the volume formula becomes:
[tex]\[ V = \pi x^2 \cdot x \][/tex]
[tex]\[ V = \pi x^3 \][/tex]
We need to identify which of the given expressions matches the form [tex]\( \pi x^3 \)[/tex].
1. [tex]\( 3 \pi x^2 + 4 \pi x + 16 \pi \)[/tex]
- This expression does not match [tex]\( \pi x^3 \)[/tex]; it contains terms with [tex]\( x^2 \)[/tex], [tex]\( x \)[/tex], and a constant term.
2. [tex]\( 3 \pi x^2 + 16 \pi \)[/tex]
- This expression also does not match [tex]\( \pi x^3 \)[/tex]; it consists of terms with [tex]\( x^2 \)[/tex] and a constant.
3. [tex]\( 3 \pi x^3 + 32 \pi \)[/tex]
- This expression includes a term [tex]\( 3 \pi x^3 \)[/tex] plus a constant term. Notice that the coefficient of [tex]\( x^3 \)[/tex] is 3, not 1. While it contains [tex]\( \pi x^3 \)[/tex], it is actually multiplied by 3.
4. [tex]\( 3 \pi x^3 + 20 \pi x^2 + 44 \pi x + 32 \pi \)[/tex]
- This expression contains multiple terms with different powers of [tex]\( x \)[/tex] and does not match the simple form [tex]\( \pi x^3 \)[/tex].
Among the given expressions, option 3, [tex]\( 3 \pi x^3 + 32 \pi \)[/tex], includes the term [tex]\( 3 \pi x^3 \)[/tex]. It suggests a connection to the volume formula [tex]\( \pi x^3 \)[/tex], albeit scaled by a constant.
Thus, the expression that includes the term matching the volume formula under given assumptions is:
[tex]\[ 3 \pi x^3 + 32 \pi \][/tex]
Therefore, the correct answer is:
[tex]\[ 3 \pi x^3 + 32 \pi \][/tex]
Which corresponds to the third option.
[tex]\[ V = \pi r^2 h \][/tex]
In this context, suppose the radius [tex]\( r \)[/tex] is denoted by [tex]\( x \)[/tex] and the height [tex]\( h \)[/tex] is also denoted by [tex]\( x \)[/tex]. Then, the volume formula becomes:
[tex]\[ V = \pi x^2 \cdot x \][/tex]
[tex]\[ V = \pi x^3 \][/tex]
We need to identify which of the given expressions matches the form [tex]\( \pi x^3 \)[/tex].
1. [tex]\( 3 \pi x^2 + 4 \pi x + 16 \pi \)[/tex]
- This expression does not match [tex]\( \pi x^3 \)[/tex]; it contains terms with [tex]\( x^2 \)[/tex], [tex]\( x \)[/tex], and a constant term.
2. [tex]\( 3 \pi x^2 + 16 \pi \)[/tex]
- This expression also does not match [tex]\( \pi x^3 \)[/tex]; it consists of terms with [tex]\( x^2 \)[/tex] and a constant.
3. [tex]\( 3 \pi x^3 + 32 \pi \)[/tex]
- This expression includes a term [tex]\( 3 \pi x^3 \)[/tex] plus a constant term. Notice that the coefficient of [tex]\( x^3 \)[/tex] is 3, not 1. While it contains [tex]\( \pi x^3 \)[/tex], it is actually multiplied by 3.
4. [tex]\( 3 \pi x^3 + 20 \pi x^2 + 44 \pi x + 32 \pi \)[/tex]
- This expression contains multiple terms with different powers of [tex]\( x \)[/tex] and does not match the simple form [tex]\( \pi x^3 \)[/tex].
Among the given expressions, option 3, [tex]\( 3 \pi x^3 + 32 \pi \)[/tex], includes the term [tex]\( 3 \pi x^3 \)[/tex]. It suggests a connection to the volume formula [tex]\( \pi x^3 \)[/tex], albeit scaled by a constant.
Thus, the expression that includes the term matching the volume formula under given assumptions is:
[tex]\[ 3 \pi x^3 + 32 \pi \][/tex]
Therefore, the correct answer is:
[tex]\[ 3 \pi x^3 + 32 \pi \][/tex]
Which corresponds to the third option.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.