Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Jacob is cutting a tile in the shape of a parallelogram. Two opposite angles have measures of [tex](6n-70)^{\circ}[/tex] and [tex](2n+10)^{\circ}[/tex].

What are the two different angle measures of the parallelogram-shaped tile?

A. [tex]20^{\circ}[/tex] and [tex]160^{\circ}[/tex]
B. [tex]50^{\circ}[/tex] and [tex]130^{\circ}[/tex]
C. [tex]30^{\circ}[/tex] and [tex]150^{\circ}[/tex]
D. [tex]70^{\circ}[/tex] and [tex]110^{\circ}[/tex]


Sagot :

To determine the two different angle measures of the parallelogram-shaped tile, we need to utilize some properties of parallelograms and solve for [tex]\( n \)[/tex].

### Step-by-Step Solution:

1. Understand the Properties of Angles in a Parallelogram:
- Opposite angles in a parallelogram are equal.
- Adjacent angles in a parallelogram are supplementary, meaning that the sum of the measures of two adjacent angles is [tex]\(180^\circ\)[/tex].

2. Set Up the Equations:
- We know the measures of the two given angles: [tex]\( (6n - 70)^\circ \)[/tex] and [tex]\( (2n + 10)^\circ \)[/tex].
- According to the supplementary property of adjacent angles in a parallelogram:
[tex]\[ (6n - 70) + (2n + 10) = 180^\circ \][/tex]

3. Simplify and Solve the Equation:
- Combine like terms:
[tex]\[ 6n - 70 + 2n + 10 = 180 \][/tex]
- This simplifies to:
[tex]\[ 8n - 60 = 180 \][/tex]
- To isolate [tex]\( n \)[/tex], add 60 to both sides of the equation:
[tex]\[ 8n = 240 \][/tex]
- Divide both sides by 8 to solve for [tex]\( n \)[/tex]:
[tex]\[ n = 30 \][/tex]

4. Calculate the Measures of the Angles:
- Substitute [tex]\( n = 30 \)[/tex] back into the expressions for the angles:
[tex]\[ (6n - 70)^\circ = 6(30) - 70 = 180 - 70 = 110^\circ \][/tex]
[tex]\[ (2n + 10)^\circ = 2(30) + 10 = 60 + 10 = 70^\circ \][/tex]

5. Verify the Angles:
- Check that opposite angles are equal:
- The expressions [tex]\( (6n - 70)^\circ \)[/tex] and [tex]\( (2n + 10)^\circ \)[/tex] when evaluated for [tex]\( n = 30 \)[/tex], give us [tex]\( 110^\circ \)[/tex] and [tex]\( 70^\circ \)[/tex] respectively.
- Check the supplementary property:
- Confirm that [tex]\( 110^\circ + 70^\circ = 180^\circ \)[/tex], which is correct.

### Conclusion:
The two different angle measures of the parallelogram-shaped tile are [tex]\( 70^\circ \)[/tex] and [tex]\( 110^\circ \)[/tex].

Thus, the correct answer is:
[tex]\[ \boxed{70^\circ \text{ and } 110^\circ} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.