Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Sure! Let's solve each equation step by step.
### a. [tex]\(4x = 7 + 1\)[/tex]
1. Simplify the right-hand side:
[tex]\[ 4x = 8 \][/tex]
2. Divide both sides by 4 to isolate [tex]\(x\)[/tex]:
[tex]\[ x = \frac{8}{4} = 2 \][/tex]
So, the solution for [tex]\( x \)[/tex] in equation (a) is [tex]\( x = 2 \)[/tex].
### b. [tex]\(2(x + 2) = 14\)[/tex]
1. Expand the left-hand side:
[tex]\[ 2x + 4 = 14 \][/tex]
2. Subtract 4 from both sides to isolate the term with [tex]\(x\)[/tex]:
[tex]\[ 2x = 10 \][/tex]
3. Divide both sides by 2 to solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{10}{2} = 5 \][/tex]
So, the solution for [tex]\( x \)[/tex] in equation (b) is [tex]\( x = 5 \)[/tex].
### c. [tex]\(3x^2 = 27\)[/tex]
1. Divide both sides by 3 to simplify:
[tex]\[ x^2 = \frac{27}{3} = 9 \][/tex]
2. Take the square root of both sides:
[tex]\[ x = \sqrt{9} = \pm 3 \][/tex]
So, the solutions for [tex]\( x \)[/tex] in equation (c) are [tex]\( x = 3 \)[/tex] and [tex]\( x = -3 \)[/tex].
### d. [tex]\(\frac{33}{3x - 2} = 5.5\)[/tex]
1. Recognize that 5.5 can be written as a fraction:
[tex]\[ 5.5 = \frac{11}{2} \][/tex]
So, rewrite the equation:
[tex]\[ \frac{33}{3x - 2} = \frac{11}{2} \][/tex]
2. Cross-multiply to clear the fraction:
[tex]\[ 33 \times 2 = 11 \times (3x - 2) \][/tex]
[tex]\[ 66 = 33x - 22 \][/tex]
3. Add 22 to both sides to isolate the term with [tex]\(x\)[/tex]:
[tex]\[ 88 = 33x \][/tex]
4. Divide both sides by 33 to solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{88}{33} = \frac{8}{3} \][/tex]
So, the solution for [tex]\( x \)[/tex] in equation (d) is [tex]\( x = \frac{8}{3} \)[/tex].
### Summary:
- The solution for (a) is [tex]\( x = 2 \)[/tex].
- The solution for (b) is [tex]\( x = 5 \)[/tex].
- The solutions for (c) are [tex]\( x = 3 \)[/tex] and [tex]\( x = -3 \)[/tex].
- The solution for (d) is [tex]\( x = \frac{8}{3} \)[/tex].
### a. [tex]\(4x = 7 + 1\)[/tex]
1. Simplify the right-hand side:
[tex]\[ 4x = 8 \][/tex]
2. Divide both sides by 4 to isolate [tex]\(x\)[/tex]:
[tex]\[ x = \frac{8}{4} = 2 \][/tex]
So, the solution for [tex]\( x \)[/tex] in equation (a) is [tex]\( x = 2 \)[/tex].
### b. [tex]\(2(x + 2) = 14\)[/tex]
1. Expand the left-hand side:
[tex]\[ 2x + 4 = 14 \][/tex]
2. Subtract 4 from both sides to isolate the term with [tex]\(x\)[/tex]:
[tex]\[ 2x = 10 \][/tex]
3. Divide both sides by 2 to solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{10}{2} = 5 \][/tex]
So, the solution for [tex]\( x \)[/tex] in equation (b) is [tex]\( x = 5 \)[/tex].
### c. [tex]\(3x^2 = 27\)[/tex]
1. Divide both sides by 3 to simplify:
[tex]\[ x^2 = \frac{27}{3} = 9 \][/tex]
2. Take the square root of both sides:
[tex]\[ x = \sqrt{9} = \pm 3 \][/tex]
So, the solutions for [tex]\( x \)[/tex] in equation (c) are [tex]\( x = 3 \)[/tex] and [tex]\( x = -3 \)[/tex].
### d. [tex]\(\frac{33}{3x - 2} = 5.5\)[/tex]
1. Recognize that 5.5 can be written as a fraction:
[tex]\[ 5.5 = \frac{11}{2} \][/tex]
So, rewrite the equation:
[tex]\[ \frac{33}{3x - 2} = \frac{11}{2} \][/tex]
2. Cross-multiply to clear the fraction:
[tex]\[ 33 \times 2 = 11 \times (3x - 2) \][/tex]
[tex]\[ 66 = 33x - 22 \][/tex]
3. Add 22 to both sides to isolate the term with [tex]\(x\)[/tex]:
[tex]\[ 88 = 33x \][/tex]
4. Divide both sides by 33 to solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{88}{33} = \frac{8}{3} \][/tex]
So, the solution for [tex]\( x \)[/tex] in equation (d) is [tex]\( x = \frac{8}{3} \)[/tex].
### Summary:
- The solution for (a) is [tex]\( x = 2 \)[/tex].
- The solution for (b) is [tex]\( x = 5 \)[/tex].
- The solutions for (c) are [tex]\( x = 3 \)[/tex] and [tex]\( x = -3 \)[/tex].
- The solution for (d) is [tex]\( x = \frac{8}{3} \)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.