Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's find the equilibrium constant ([tex]\( K_c \)[/tex]) for the given reaction. The reaction is:
[tex]\[ 3 O_2(g) \longleftrightarrow 2 O_3(g) \][/tex]
Given the equilibrium concentrations at [tex]\( 298 \, K \)[/tex]:
- The equilibrium concentration of [tex]\( O_2 \)[/tex] is [tex]\( [O_2] = 1.6 \times 10^{-2} \, \text{M} \)[/tex].
- The equilibrium concentration of [tex]\( O_3 \)[/tex] is [tex]\( [O_3] = 2.86 \times 10^{-20} \, \text{M} \)[/tex].
The equilibrium constant expression for the reaction is:
[tex]\[ K_c = \frac{[O_3]^2}{[O_2]^3} \][/tex]
We will substitute the given concentrations into this expression.
1. Substitute the equilibrium concentration of [tex]\( O_3 \)[/tex]:
[tex]\[ [O_3] = 2.86 \times 10^{-20} \, \text{M} \][/tex]
[tex]\[ [O_3]^2 = (2.86 \times 10^{-20} \, \text{M})^2 = 8.1796 \times 10^{-40} \, \text{M}^2 \][/tex]
2. Substitute the equilibrium concentration of [tex]\( O_2 \)[/tex]:
[tex]\[ [O_2] = 1.6 \times 10^{-2} \, \text{M} \][/tex]
[tex]\[ [O_2]^3 = (1.6 \times 10^{-2} \, \text{M})^3 = 4.096 \times 10^{-6} \, \text{M}^3 \][/tex]
3. Now, substitute these values into the equilibrium constant expression:
[tex]\[ K_c = \frac{[O_3]^2}{[O_2]^3} = \frac{8.1796 \times 10^{-40} \, \text{M}^2}{4.096 \times 10^{-6} \, \text{M}^3} \][/tex]
4. Perform the division:
[tex]\[ K_c = \frac{8.1796 \times 10^{-40}}{4.096 \times 10^{-6}} \approx 1.9969726562499997 \times 10^{-34} \][/tex]
Therefore, the equilibrium constant [tex]\( K_c \)[/tex] for the reaction at [tex]\( 298 \, K \)[/tex] is:
[tex]\[ K_c \approx 1.9969726562499997 \times 10^{-34} \][/tex]
That is your final answer.
[tex]\[ 3 O_2(g) \longleftrightarrow 2 O_3(g) \][/tex]
Given the equilibrium concentrations at [tex]\( 298 \, K \)[/tex]:
- The equilibrium concentration of [tex]\( O_2 \)[/tex] is [tex]\( [O_2] = 1.6 \times 10^{-2} \, \text{M} \)[/tex].
- The equilibrium concentration of [tex]\( O_3 \)[/tex] is [tex]\( [O_3] = 2.86 \times 10^{-20} \, \text{M} \)[/tex].
The equilibrium constant expression for the reaction is:
[tex]\[ K_c = \frac{[O_3]^2}{[O_2]^3} \][/tex]
We will substitute the given concentrations into this expression.
1. Substitute the equilibrium concentration of [tex]\( O_3 \)[/tex]:
[tex]\[ [O_3] = 2.86 \times 10^{-20} \, \text{M} \][/tex]
[tex]\[ [O_3]^2 = (2.86 \times 10^{-20} \, \text{M})^2 = 8.1796 \times 10^{-40} \, \text{M}^2 \][/tex]
2. Substitute the equilibrium concentration of [tex]\( O_2 \)[/tex]:
[tex]\[ [O_2] = 1.6 \times 10^{-2} \, \text{M} \][/tex]
[tex]\[ [O_2]^3 = (1.6 \times 10^{-2} \, \text{M})^3 = 4.096 \times 10^{-6} \, \text{M}^3 \][/tex]
3. Now, substitute these values into the equilibrium constant expression:
[tex]\[ K_c = \frac{[O_3]^2}{[O_2]^3} = \frac{8.1796 \times 10^{-40} \, \text{M}^2}{4.096 \times 10^{-6} \, \text{M}^3} \][/tex]
4. Perform the division:
[tex]\[ K_c = \frac{8.1796 \times 10^{-40}}{4.096 \times 10^{-6}} \approx 1.9969726562499997 \times 10^{-34} \][/tex]
Therefore, the equilibrium constant [tex]\( K_c \)[/tex] for the reaction at [tex]\( 298 \, K \)[/tex] is:
[tex]\[ K_c \approx 1.9969726562499997 \times 10^{-34} \][/tex]
That is your final answer.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.