Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve for [tex]\(\sin(\theta)\)[/tex] when [tex]\(\cos(\theta) = -\frac{2\sqrt{5}}{5}\)[/tex] and [tex]\(\theta\)[/tex] is in quadrant II, follow these steps:
1. Identify [tex]\(\cos(\theta)\)[/tex]: We are given that [tex]\(\cos(\theta) = -\frac{2\sqrt{5}}{5}\)[/tex]. This is a negative value, which is appropriate since cosine is negative in quadrant II.
2. Use the Pythagorean identity: The Pythagorean identity states that for any angle [tex]\(\theta\)[/tex],
[tex]\[ \sin^2(\theta) + \cos^2(\theta) = 1 \][/tex]
3. Calculate [tex]\(\cos^2(\theta)\)[/tex]:
[tex]\[ \cos^2(\theta) = \left(-\frac{2\sqrt{5}}{5}\right)^2 = \left(\frac{2\sqrt{5}}{5}\right)^2 = \frac{4 \cdot 5}{25} = \frac{20}{25} = \frac{4}{5} \][/tex]
4. Find [tex]\(\sin^2(\theta)\)[/tex]:
[tex]\[ \sin^2(\theta) = 1 - \cos^2(\theta) = 1 - \frac{4}{5} = \frac{5}{5} - \frac{4}{5} = \frac{1}{5} \][/tex]
5. Determine [tex]\(\sin(\theta)\)[/tex]:
[tex]\[ \sin(\theta) = \sqrt{\sin^2(\theta)} = \sqrt{\frac{1}{5}} = \frac{\sqrt{1}}{\sqrt{5}} = \frac{1}{\sqrt{5}} \][/tex]
6. Rationalize the denominator:
[tex]\[ \sin(\theta) = \frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5}}{5} \][/tex]
7. Sign of [tex]\(\sin(\theta)\)[/tex] in quadrant II: In quadrant II, sine is positive. Therefore,
[tex]\[ \sin(\theta) = \frac{\sqrt{5}}{5} \][/tex]
So, the correct value for [tex]\(\sin(\theta)\)[/tex] in this context is [tex]\(\frac{\sqrt{5}}{5}\)[/tex].
The correct answer is:
C. [tex]\(\frac{\sqrt{5}}{5}\)[/tex]
1. Identify [tex]\(\cos(\theta)\)[/tex]: We are given that [tex]\(\cos(\theta) = -\frac{2\sqrt{5}}{5}\)[/tex]. This is a negative value, which is appropriate since cosine is negative in quadrant II.
2. Use the Pythagorean identity: The Pythagorean identity states that for any angle [tex]\(\theta\)[/tex],
[tex]\[ \sin^2(\theta) + \cos^2(\theta) = 1 \][/tex]
3. Calculate [tex]\(\cos^2(\theta)\)[/tex]:
[tex]\[ \cos^2(\theta) = \left(-\frac{2\sqrt{5}}{5}\right)^2 = \left(\frac{2\sqrt{5}}{5}\right)^2 = \frac{4 \cdot 5}{25} = \frac{20}{25} = \frac{4}{5} \][/tex]
4. Find [tex]\(\sin^2(\theta)\)[/tex]:
[tex]\[ \sin^2(\theta) = 1 - \cos^2(\theta) = 1 - \frac{4}{5} = \frac{5}{5} - \frac{4}{5} = \frac{1}{5} \][/tex]
5. Determine [tex]\(\sin(\theta)\)[/tex]:
[tex]\[ \sin(\theta) = \sqrt{\sin^2(\theta)} = \sqrt{\frac{1}{5}} = \frac{\sqrt{1}}{\sqrt{5}} = \frac{1}{\sqrt{5}} \][/tex]
6. Rationalize the denominator:
[tex]\[ \sin(\theta) = \frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5}}{5} \][/tex]
7. Sign of [tex]\(\sin(\theta)\)[/tex] in quadrant II: In quadrant II, sine is positive. Therefore,
[tex]\[ \sin(\theta) = \frac{\sqrt{5}}{5} \][/tex]
So, the correct value for [tex]\(\sin(\theta)\)[/tex] in this context is [tex]\(\frac{\sqrt{5}}{5}\)[/tex].
The correct answer is:
C. [tex]\(\frac{\sqrt{5}}{5}\)[/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.