Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find [tex]\(\frac{dy}{dx}\)[/tex] using implicit differentiation for the equation [tex]\( x = \sec\left(\frac{1}{y}\right) \)[/tex], let's follow these steps:
1. Differentiate both sides of the equation with respect to [tex]\( x \)[/tex] implicitly:
[tex]\[ x = \sec\left(\frac{1}{y}\right) \][/tex]
Differentiating both sides with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx} \left( x \right) = \frac{d}{dx} \left( \sec\left(\frac{1}{y}\right) \right) \][/tex]
2. Differentiate the left-hand side:
[tex]\[ \frac{d}{dx} \left( x \right) = 1 \][/tex]
3. Differentiate the right-hand side:
Let's denote [tex]\( u = \frac{1}{y} \)[/tex]. Then:
[tex]\[ \frac{d}{dx} \left(\sec(u)\right) = \sec(u) \tan(u) \cdot \frac{du}{dx} \][/tex]
Since [tex]\( u = \frac{1}{y} \)[/tex]:
[tex]\[ \frac{du}{dx} = \frac{d}{dx} \left(\frac{1}{y}\right) \][/tex]
By applying the chain rule to [tex]\(\frac{1}{y}\)[/tex]:
[tex]\[ \frac{d}{dx} \left(\frac{1}{y}\right) = -\frac{1}{y^2} \cdot \frac{dy}{dx} \][/tex]
Substituting back, we get:
[tex]\[ \frac{d}{dx} \left( \sec\left(\frac{1}{y}\right) \right) = \sec\left(\frac{1}{y}\right) \tan\left(\frac{1}{y}\right) \left( - \frac{1}{y^2} \cdot \frac{dy}{dx} \right) \][/tex]
4. Combine the results:
[tex]\[ 1 = \sec\left(\frac{1}{y}\right) \tan\left(\frac{1}{y}\right) \left( -\frac{1}{y^2} \cdot \frac{dy}{dx} \right) \][/tex]
5. Solve for [tex]\(\frac{dy}{dx}\)[/tex]:
[tex]\[ 1 = -\frac{\sec\left(\frac{1}{y}\right) \tan\left(\frac{1}{y}\right)}{y^2} \cdot \frac{dy}{dx} \][/tex]
Rearrange to solve for [tex]\(\frac{dy}{dx}\)[/tex]:
[tex]\[ \frac{dy}{dx} = -\frac{y^2}{\sec\left(\frac{1}{y}\right) \tan\left(\frac{1}{y}\right)} \][/tex]
6. Simplify the result if possible and notice any possible contradictions:
[tex]\[ \frac{dy}{dx} = -\frac{y^2}{\sec\left(\frac{1}{y}\right) \tan\left(\frac{1}{y}\right)} \][/tex]
However, upon solving the implicit differentiation, it turns out that there are no valid solutions (i.e., [tex]\(\frac{dy}{dx}\)[/tex] does not have legitimate means within these operations), leading to a conclusion that there are no solutions for [tex]\(\frac{dy}{dx}\)[/tex] in the given context:
Therefore, [tex]\(\frac{dy}{dx} = \boxed{[]}\)[/tex].
1. Differentiate both sides of the equation with respect to [tex]\( x \)[/tex] implicitly:
[tex]\[ x = \sec\left(\frac{1}{y}\right) \][/tex]
Differentiating both sides with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx} \left( x \right) = \frac{d}{dx} \left( \sec\left(\frac{1}{y}\right) \right) \][/tex]
2. Differentiate the left-hand side:
[tex]\[ \frac{d}{dx} \left( x \right) = 1 \][/tex]
3. Differentiate the right-hand side:
Let's denote [tex]\( u = \frac{1}{y} \)[/tex]. Then:
[tex]\[ \frac{d}{dx} \left(\sec(u)\right) = \sec(u) \tan(u) \cdot \frac{du}{dx} \][/tex]
Since [tex]\( u = \frac{1}{y} \)[/tex]:
[tex]\[ \frac{du}{dx} = \frac{d}{dx} \left(\frac{1}{y}\right) \][/tex]
By applying the chain rule to [tex]\(\frac{1}{y}\)[/tex]:
[tex]\[ \frac{d}{dx} \left(\frac{1}{y}\right) = -\frac{1}{y^2} \cdot \frac{dy}{dx} \][/tex]
Substituting back, we get:
[tex]\[ \frac{d}{dx} \left( \sec\left(\frac{1}{y}\right) \right) = \sec\left(\frac{1}{y}\right) \tan\left(\frac{1}{y}\right) \left( - \frac{1}{y^2} \cdot \frac{dy}{dx} \right) \][/tex]
4. Combine the results:
[tex]\[ 1 = \sec\left(\frac{1}{y}\right) \tan\left(\frac{1}{y}\right) \left( -\frac{1}{y^2} \cdot \frac{dy}{dx} \right) \][/tex]
5. Solve for [tex]\(\frac{dy}{dx}\)[/tex]:
[tex]\[ 1 = -\frac{\sec\left(\frac{1}{y}\right) \tan\left(\frac{1}{y}\right)}{y^2} \cdot \frac{dy}{dx} \][/tex]
Rearrange to solve for [tex]\(\frac{dy}{dx}\)[/tex]:
[tex]\[ \frac{dy}{dx} = -\frac{y^2}{\sec\left(\frac{1}{y}\right) \tan\left(\frac{1}{y}\right)} \][/tex]
6. Simplify the result if possible and notice any possible contradictions:
[tex]\[ \frac{dy}{dx} = -\frac{y^2}{\sec\left(\frac{1}{y}\right) \tan\left(\frac{1}{y}\right)} \][/tex]
However, upon solving the implicit differentiation, it turns out that there are no valid solutions (i.e., [tex]\(\frac{dy}{dx}\)[/tex] does not have legitimate means within these operations), leading to a conclusion that there are no solutions for [tex]\(\frac{dy}{dx}\)[/tex] in the given context:
Therefore, [tex]\(\frac{dy}{dx} = \boxed{[]}\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.