Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Solve [tex]\( \tan(x)(\tan(x) + 1) = 0 \)[/tex]:

A. [tex]\( x = \pm n\pi, x = \frac{\pi}{4} \pm n\pi \)[/tex]

B. [tex]\( x = \frac{\pi}{3} \pm 2\pi n, x = \frac{3\pi}{4} \pm 2\pi n \)[/tex]

C. [tex]\( x = \pm \pi n, x = \frac{\pi}{2} \pm 2\pi n \)[/tex]

D. [tex]\( x = \pm \pi n, x = \frac{3\pi}{4} \pm \pi n \)[/tex]


Sagot :

To solve the equation [tex]\(\tan(x)(\tan(x) + 1) = 0\)[/tex], we look for the values of [tex]\(x\)[/tex] that satisfy the equation.

First, let's break the original equation into its factors:
[tex]\[ \tan(x) \cdot (\tan(x) + 1) = 0 \][/tex]

For this product to be zero, at least one of the factors must be zero. This gives us two separate equations to solve:
1. [tex]\(\tan(x) = 0\)[/tex]
2. [tex]\(\tan(x) + 1 = 0\)[/tex]

### Solving [tex]\(\tan(x) = 0\)[/tex]

The tangent function [tex]\(\tan(x)\)[/tex] is zero at integer multiples of [tex]\(\pi\)[/tex]:
[tex]\[ x = n\pi \quad \text{for any integer } n. \][/tex]

### Solving [tex]\(\tan(x) + 1 = 0\)[/tex]

Rewriting the equation, we get:
[tex]\[ \tan(x) = -1 \][/tex]

The tangent function [tex]\(\tan(x)\)[/tex] equals [tex]\(-1\)[/tex] at angles where [tex]\(x\)[/tex] is an odd multiple of [tex]\(\frac{\pi}{4}\)[/tex]. Therefore:
[tex]\[ x = \frac{3\pi}{4} + n\pi \quad \text{for any integer } n. \][/tex]

Combining both solutions, we obtain:
[tex]\[ x = n\pi \quad \text{and} \quad x = \frac{3\pi}{4} + n\pi \quad \text{for any integer } n. \][/tex]

Now we match these combined solutions with the given answer choices:
[tex]\[ \text{A. } x= \pm n\pi, \quad x=\frac{\pi}{4} \pm n\pi \][/tex]
[tex]\[ \text{B. } x=\frac{\pi}{3} \pm 2 \pi n, \quad x=\frac{3 \pi}{4} \pm 2 \pi n \][/tex]
[tex]\[ \text{C. } x=\pm \pi n, \quad x=\frac{\pi}{2} \pm 2 \pi n \][/tex]
[tex]\[ \text{D. } x= \pm \pi n, \quad x=\frac{3 \pi}{4} \pm \pi n \][/tex]

The combined solutions [tex]\(x = n\pi \quad \text{and} \quad x = \frac{3\pi}{4} + n\pi\)[/tex] correspond to choice D:
[tex]\[ \text{D. } x= \pm \pi n, x=\frac{3 \pi}{4} \pm \pi n \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{D} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.