Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
The volume of the cuboid can be calculated by dividing its mass by the density of oak:
$ \text{Volume} = \frac{\text{Mass}}{\text{Density}} = \frac{80 \text{ g}}{0.67 \text{ g/cm}^3} = 119.4 \text{ cm}^3 $
The volume of a cuboid is given by the formula:
$ \text{Volume} = \text{Length} \times \text{Width} \times \text{Height} $
Since the volume is given, we can set up an equation:
$ 119.4 \text{ cm}^3 = \text{Length} \times \text{Width} \times \text{Height} $
Since the length and width are not given, we cannot solve for the height directly. However, we can assume that the length and width are equal, which is a common assumption for a cuboid. This gives:
$ 119.4 \text{ cm}^3 = \text{Length}^2 \times \text{Height} $
Now we can solve for the height:
$ \text{Height} = \frac{119.4 \text{ cm}^3}{\text{Length}^2} $
To find the height, we need to know the length and width. If we assume the length and width are equal, we can use the volume to find the length:
$ \text{Length}^2 \times \text{Height} = 119.4 \text{ cm}^3 $
$ \text{Length}^2 = \frac{119.4 \text{ cm}^3}{\text{Height}} $
$ \text{Length} = \sqrt{\frac{119.4 \text{ cm}^3}{\text{Height}}} $
Now we can substitute this into the equation for the height:
$ \text{Height} = \frac{119.4 \text{ cm}^3}{\left(\sqrt{\frac{119.4 \text{ cm}^3}{\text{Height}}}\right)^2} $
$ \text{Height} = \frac{119.4 \text{ cm}^3}{\frac{119.4 \text{ cm}^3}{\text{Height}}} $
$ \text{Height} = \text{Height} $
This is a contradiction, so we cannot solve for the height without knowing the length and width.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.