Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the equation [tex]\(2 \log x - \log 3 = \log 3\)[/tex], let's go through a detailed, step-by-step solution.
1. Given Equation:
[tex]\[ 2 \log x - \log 3 = \log 3 \][/tex]
2. Isolate the logarithmic expressions:
Add [tex]\(\log 3\)[/tex] to both sides of the equation:
[tex]\[ 2 \log x = 2 \log 3 \][/tex]
3. Simplify the equation:
Divide both sides by 2:
[tex]\[ \log x = \log 3 \][/tex]
4. Remove the logarithm by exponentiating both sides:
When the logarithms are equal, their arguments must also be equal:
[tex]\[ x = 3 \][/tex]
5. Check for extraneous solutions:
Logarithmic functions are only defined for positive arguments. This means that [tex]\( \log x \)[/tex] is only defined for [tex]\( x > 0 \)[/tex]. Hence, [tex]\( x = -3 \)[/tex] would be an extraneous solution since the logarithm of a negative number is undefined.
Therefore, the solution to [tex]\(2 \log x - \log 3 = \log 3\)[/tex] is [tex]\( x = 3 \)[/tex]. The solution [tex]\( x = -3 \)[/tex] is considered but rejected because logarithms are not defined for negative numbers.
So the true statement is:
"Only -3 is an extraneous solution."
1. Given Equation:
[tex]\[ 2 \log x - \log 3 = \log 3 \][/tex]
2. Isolate the logarithmic expressions:
Add [tex]\(\log 3\)[/tex] to both sides of the equation:
[tex]\[ 2 \log x = 2 \log 3 \][/tex]
3. Simplify the equation:
Divide both sides by 2:
[tex]\[ \log x = \log 3 \][/tex]
4. Remove the logarithm by exponentiating both sides:
When the logarithms are equal, their arguments must also be equal:
[tex]\[ x = 3 \][/tex]
5. Check for extraneous solutions:
Logarithmic functions are only defined for positive arguments. This means that [tex]\( \log x \)[/tex] is only defined for [tex]\( x > 0 \)[/tex]. Hence, [tex]\( x = -3 \)[/tex] would be an extraneous solution since the logarithm of a negative number is undefined.
Therefore, the solution to [tex]\(2 \log x - \log 3 = \log 3\)[/tex] is [tex]\( x = 3 \)[/tex]. The solution [tex]\( x = -3 \)[/tex] is considered but rejected because logarithms are not defined for negative numbers.
So the true statement is:
"Only -3 is an extraneous solution."
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.