Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Completely factor this quadratic expression:
[tex]\[ 4x^2 + 12x - 72 \][/tex]

Drag each term to the correct location on the expression. Each term can be used more than once, but not all terms will be used.

Terms:
3, [tex]\(4x\)[/tex], 4, 8, [tex]\(x^2\)[/tex], 2, [tex]\(x\)[/tex], 1, [tex]\((x -\)[/tex], [tex]\(\vdots + 6)\)[/tex]

[tex]\[ 4x^2 + 12x - 72 = ( \_\_ )( \_\_ ) \][/tex]


Sagot :

To completely factor the quadratic expression [tex]\(4x^2 + 12x - 72\)[/tex], let's follow the steps to factor it step-by-step.

### Step 1: Identify Common Factors
First, we look for common factors in the terms of the quadratic expression. We notice that each term can be divided by 4:
[tex]\[ 4x^2 + 12x - 72 = 4(x^2 + 3x - 18) \][/tex]

### Step 2: Factor the Quadratic Expression Inside the Parentheses
Next, we focus on factoring the quadratic expression inside the parentheses: [tex]\(x^2 + 3x - 18\)[/tex].
We search for two numbers that multiply to [tex]\(-18\)[/tex] (the constant term) and add up to [tex]\(3\)[/tex] (the coefficient of the [tex]\(x\)[/tex] term).

The numbers that satisfy these conditions are [tex]\(6\)[/tex] and [tex]\(-3\)[/tex] because:
[tex]\[ 6 \times (-3) = -18 \][/tex]
[tex]\[ 6 + (-3) = 3 \][/tex]

This allows us to split the middle term and factor by grouping:
[tex]\[ x^2 + 3x - 18 = x^2 + 6x - 3x - 18 \][/tex]
[tex]\[ = x(x + 6) - 3(x + 6) \][/tex]
[tex]\[ = (x - 3)(x + 6) \][/tex]

### Step 3: Combine the Common Factor from Step 1
We put everything together by multiplying the common factor from Step 1 with the factored expression:
[tex]\[ 4(x^2 + 3x - 18) = 4(x - 3)(x + 6) \][/tex]

### Final Factored Expression
Thus, the completely factored form of the given quadratic expression [tex]\(4x^2 + 12x - 72\)[/tex] is:
[tex]\[ 4(x - 3)(x + 6) \][/tex]

So, the correct placement of terms for the expression is:
[tex]\[ 4(x - 3)(x + 6) \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.