Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure, let's go through this step by step.
Step 1: Identify the known values.
- The index of refraction for glass, [tex]\( n_{\text{glass}} = 1.50 \)[/tex]
- The index of refraction for water, [tex]\( n_{\text{water}} = 1.33 \)[/tex]
- The angle of incidence in the glass, [tex]\( \theta_{\text{glass}} = 35^\circ \)[/tex]
Step 2: Use Snell's Law to find the angle of refraction in water.
Snell's Law is given by:
[tex]\[ n_1 \sin(\theta_1) = n_2 \sin(\theta_2) \][/tex]
Rearranging to solve for [tex]\(\theta_2\)[/tex]:
[tex]\[ \theta_2 = \sin^{-1}\left(\frac{n_1 \sin(\theta_1)}{n_2}\right) \][/tex]
Plug in the known values:
[tex]\[ \theta_{\text{water}} = \sin^{-1}\left(\frac{1.50 \cdot \sin(35^\circ)}{1.33}\right) \][/tex]
Step 3: Calculation.
Evaluate the expression inside the sine inverse function:
- First, compute [tex]\(\sin(35^\circ)\)[/tex]. Let's convert 35 degrees to radians and find [tex]\(\sin(35^\circ)\)[/tex].
- [tex]\(\sin(35^\circ) \approx 0.5736\)[/tex]
- Now, calculate the ratio [tex]\(\frac{1.50 \cdot 0.5736}{1.33} \approx 0.6468\)[/tex]
Next, use the inverse sine (arcsine) function to find the angle whose sine is approximately 0.6468.
[tex]\[ \theta_{\text{water}} = \sin^{-1}(0.6468) \approx 40.3^\circ \][/tex]
Step 4: Conclusion.
Based on the calculations, the angle of refraction as the light wave passes from glass into water is approximately [tex]\(40.3^\circ\)[/tex].
Therefore, the correct answer is:
C. [tex]\(40.3^\circ\)[/tex]
Step 1: Identify the known values.
- The index of refraction for glass, [tex]\( n_{\text{glass}} = 1.50 \)[/tex]
- The index of refraction for water, [tex]\( n_{\text{water}} = 1.33 \)[/tex]
- The angle of incidence in the glass, [tex]\( \theta_{\text{glass}} = 35^\circ \)[/tex]
Step 2: Use Snell's Law to find the angle of refraction in water.
Snell's Law is given by:
[tex]\[ n_1 \sin(\theta_1) = n_2 \sin(\theta_2) \][/tex]
Rearranging to solve for [tex]\(\theta_2\)[/tex]:
[tex]\[ \theta_2 = \sin^{-1}\left(\frac{n_1 \sin(\theta_1)}{n_2}\right) \][/tex]
Plug in the known values:
[tex]\[ \theta_{\text{water}} = \sin^{-1}\left(\frac{1.50 \cdot \sin(35^\circ)}{1.33}\right) \][/tex]
Step 3: Calculation.
Evaluate the expression inside the sine inverse function:
- First, compute [tex]\(\sin(35^\circ)\)[/tex]. Let's convert 35 degrees to radians and find [tex]\(\sin(35^\circ)\)[/tex].
- [tex]\(\sin(35^\circ) \approx 0.5736\)[/tex]
- Now, calculate the ratio [tex]\(\frac{1.50 \cdot 0.5736}{1.33} \approx 0.6468\)[/tex]
Next, use the inverse sine (arcsine) function to find the angle whose sine is approximately 0.6468.
[tex]\[ \theta_{\text{water}} = \sin^{-1}(0.6468) \approx 40.3^\circ \][/tex]
Step 4: Conclusion.
Based on the calculations, the angle of refraction as the light wave passes from glass into water is approximately [tex]\(40.3^\circ\)[/tex].
Therefore, the correct answer is:
C. [tex]\(40.3^\circ\)[/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.