Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the problem of comparing [tex]\(-3.\overline{5}\)[/tex] and [tex]\(-\frac{10}{3}\)[/tex], let's break the problem down step by step.
First, we need to represent [tex]\( -3.\overline{5} \)[/tex] in a more precise form. [tex]\( -3.\overline{5} \)[/tex] is a repeating decimal, meaning it extends infinitely as follows:
[tex]\[ -3.55555\ldots \][/tex]
In order to facilitate comparison, it can sometimes be helpful to think of repeating decimals with a few more decimal places. Here [tex]\(-3.\overline{5}\)[/tex] can be approximated more clearly as:
[tex]\[ -3.55555\ldots \][/tex]
Next, we'll convert the fraction [tex]\( -\frac{10}{3} \)[/tex] into its decimal form to compare.
[tex]\[ -\frac{10}{3} = -3.33333\ldots \][/tex]
Now that we have both numbers in decimal form, we can directly compare:
[tex]\[ -3.55555\ldots \][/tex]
[tex]\[ -3.33333\ldots \][/tex]
When comparing these two numbers, it's clear that [tex]\( -3.55555\ldots \)[/tex] is less than [tex]\( -3.33333\ldots \)[/tex], because as we move farther from zero on the number line in the negative direction, the value of the number decreases. Thus:
[tex]\[ -3.\overline{5} < -\frac{10}{3} \][/tex]
Therefore, the correct comparison is:
\[ -3 . \overline{5} < -\frac{10}{3} \.]
So, the correct selection from the given options is:
\[ -3 \overline{5} < -\frac{10}{3} \.]
First, we need to represent [tex]\( -3.\overline{5} \)[/tex] in a more precise form. [tex]\( -3.\overline{5} \)[/tex] is a repeating decimal, meaning it extends infinitely as follows:
[tex]\[ -3.55555\ldots \][/tex]
In order to facilitate comparison, it can sometimes be helpful to think of repeating decimals with a few more decimal places. Here [tex]\(-3.\overline{5}\)[/tex] can be approximated more clearly as:
[tex]\[ -3.55555\ldots \][/tex]
Next, we'll convert the fraction [tex]\( -\frac{10}{3} \)[/tex] into its decimal form to compare.
[tex]\[ -\frac{10}{3} = -3.33333\ldots \][/tex]
Now that we have both numbers in decimal form, we can directly compare:
[tex]\[ -3.55555\ldots \][/tex]
[tex]\[ -3.33333\ldots \][/tex]
When comparing these two numbers, it's clear that [tex]\( -3.55555\ldots \)[/tex] is less than [tex]\( -3.33333\ldots \)[/tex], because as we move farther from zero on the number line in the negative direction, the value of the number decreases. Thus:
[tex]\[ -3.\overline{5} < -\frac{10}{3} \][/tex]
Therefore, the correct comparison is:
\[ -3 . \overline{5} < -\frac{10}{3} \.]
So, the correct selection from the given options is:
\[ -3 \overline{5} < -\frac{10}{3} \.]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.