Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which equation models the distance [tex]\( d \)[/tex] of the weight from its equilibrium after [tex]\( t \)[/tex] seconds, we need to find an equation that satisfies the conditions provided: the weight is 9 inches below equilibrium at [tex]\( t = 0 \)[/tex] and returns to this position after [tex]\( t = 3 \)[/tex] seconds.
Given equations:
1. [tex]\( d = -9 \cos \left( \frac{\pi}{3} t \right) \)[/tex]
2. [tex]\( d = -9 \cos \left( \frac{2\pi}{3} t \right) \)[/tex]
3. [tex]\( d = -3 \cos \left( \frac{\pi}{9} t \right) \)[/tex]
4. [tex]\( d = -3 \cos \left( \frac{2\pi}{9} t \right) \)[/tex]
Let's test each equation separately:
### 1. [tex]\( d = -9 \cos \left( \frac{\pi}{3} t \right) \)[/tex]
At [tex]\( t = 0 \)[/tex]:
[tex]\[ d = -9 \cos \left( \frac{\pi}{3} \times 0 \right) = -9 \cos(0) = -9 \times 1 = -9 \][/tex]
This satisfies the condition at [tex]\( t = 0 \)[/tex].
At [tex]\( t = 3 \)[/tex]:
[tex]\[ d = -9 \cos \left( \frac{\pi}{3} \times 3 \right) = -9 \cos(\pi) = -9 \times -1 = 9 \][/tex]
This does not match the condition at [tex]\( t = 3 \)[/tex] since we need [tex]\( d = -9 \)[/tex].
### 2. [tex]\( d = -9 \cos \left( \frac{2\pi}{3} t \right) \)[/tex]
At [tex]\( t = 0 \)[/tex]:
[tex]\[ d = -9 \cos \left( \frac{2\pi}{3} \times 0 \right) = -9 \cos(0) = -9 \times 1 = -9 \][/tex]
This satisfies the condition at [tex]\( t = 0 \)[/tex].
At [tex]\( t = 3 \)[/tex]:
[tex]\[ d = -9 \cos \left( \frac{2\pi}{3} \times 3 \right) = -9 \cos(2\pi) = -9 \times 1 = -9 \][/tex]
This satisfies the condition at [tex]\( t = 3 \)[/tex].
### 3. [tex]\( d = -3 \cos \left( \frac{\pi}{9} t \right) \)[/tex]
At [tex]\( t = 0 \)[/tex]:
[tex]\[ d = -3 \cos \left( \frac{\pi}{9} \times 0 \right) = -3 \cos(0) = -3 \times 1 = -3 \][/tex]
This does not match the condition at [tex]\( t = 0 \)[/tex].
### 4. [tex]\( d = -3 \cos \left( \frac{2\pi}{9} t \right) \)[/tex]
At [tex]\( t = 0 \)[/tex]:
[tex]\[ d = -3 \cos \left( \frac{2\pi}{9} \times 0 \right) = -3 \cos(0) = -3 \times 1 = -3 \][/tex]
This does not match the condition at [tex]\( t = 0 \)[/tex].
Only the second equation [tex]\( d = -9 \cos \left( \frac{2\pi}{3} t \right) \)[/tex] satisfies the condition both at [tex]\( t = 0 \)[/tex] and [tex]\( t = 3 \)[/tex] seconds. Thus, the correct equation that models the distance [tex]\( d \)[/tex] of the weight from its equilibrium after [tex]\( t \)[/tex] seconds is:
[tex]\[ d = -9 \cos \left( \frac{2\pi}{3} t \right) \][/tex]
Given equations:
1. [tex]\( d = -9 \cos \left( \frac{\pi}{3} t \right) \)[/tex]
2. [tex]\( d = -9 \cos \left( \frac{2\pi}{3} t \right) \)[/tex]
3. [tex]\( d = -3 \cos \left( \frac{\pi}{9} t \right) \)[/tex]
4. [tex]\( d = -3 \cos \left( \frac{2\pi}{9} t \right) \)[/tex]
Let's test each equation separately:
### 1. [tex]\( d = -9 \cos \left( \frac{\pi}{3} t \right) \)[/tex]
At [tex]\( t = 0 \)[/tex]:
[tex]\[ d = -9 \cos \left( \frac{\pi}{3} \times 0 \right) = -9 \cos(0) = -9 \times 1 = -9 \][/tex]
This satisfies the condition at [tex]\( t = 0 \)[/tex].
At [tex]\( t = 3 \)[/tex]:
[tex]\[ d = -9 \cos \left( \frac{\pi}{3} \times 3 \right) = -9 \cos(\pi) = -9 \times -1 = 9 \][/tex]
This does not match the condition at [tex]\( t = 3 \)[/tex] since we need [tex]\( d = -9 \)[/tex].
### 2. [tex]\( d = -9 \cos \left( \frac{2\pi}{3} t \right) \)[/tex]
At [tex]\( t = 0 \)[/tex]:
[tex]\[ d = -9 \cos \left( \frac{2\pi}{3} \times 0 \right) = -9 \cos(0) = -9 \times 1 = -9 \][/tex]
This satisfies the condition at [tex]\( t = 0 \)[/tex].
At [tex]\( t = 3 \)[/tex]:
[tex]\[ d = -9 \cos \left( \frac{2\pi}{3} \times 3 \right) = -9 \cos(2\pi) = -9 \times 1 = -9 \][/tex]
This satisfies the condition at [tex]\( t = 3 \)[/tex].
### 3. [tex]\( d = -3 \cos \left( \frac{\pi}{9} t \right) \)[/tex]
At [tex]\( t = 0 \)[/tex]:
[tex]\[ d = -3 \cos \left( \frac{\pi}{9} \times 0 \right) = -3 \cos(0) = -3 \times 1 = -3 \][/tex]
This does not match the condition at [tex]\( t = 0 \)[/tex].
### 4. [tex]\( d = -3 \cos \left( \frac{2\pi}{9} t \right) \)[/tex]
At [tex]\( t = 0 \)[/tex]:
[tex]\[ d = -3 \cos \left( \frac{2\pi}{9} \times 0 \right) = -3 \cos(0) = -3 \times 1 = -3 \][/tex]
This does not match the condition at [tex]\( t = 0 \)[/tex].
Only the second equation [tex]\( d = -9 \cos \left( \frac{2\pi}{3} t \right) \)[/tex] satisfies the condition both at [tex]\( t = 0 \)[/tex] and [tex]\( t = 3 \)[/tex] seconds. Thus, the correct equation that models the distance [tex]\( d \)[/tex] of the weight from its equilibrium after [tex]\( t \)[/tex] seconds is:
[tex]\[ d = -9 \cos \left( \frac{2\pi}{3} t \right) \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.