Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the correct statement about the polynomial [tex]\( 3x^2y^2 - 5xy^2 - 3x^2y^2 + 2x^2 \)[/tex] after it has been fully simplified, let's proceed step-by-step with the simplification process.
### Step-by-Step Simplification:
1. Write down the polynomial:
[tex]\[ 3x^2y^2 - 5xy^2 - 3x^2y^2 + 2x^2 \][/tex]
2. Combine like terms:
- Notice that [tex]\( 3x^2y^2 \)[/tex] and [tex]\( -3x^2y^2 \)[/tex] are like terms and can be combined:
[tex]\[ 3x^2y^2 - 3x^2y^2 = 0 \][/tex]
- After combining these terms, the polynomial simplifies to:
[tex]\[ 0 - 5xy^2 + 2x^2 \][/tex]
Which is:
[tex]\[ -5xy^2 + 2x^2 \][/tex]
3. Count the remaining terms:
- The simplified polynomial [tex]\( -5xy^2 + 2x^2 \)[/tex] consists of 2 terms: [tex]\( -5xy^2 \)[/tex] and [tex]\( 2x^2 \)[/tex].
4. Determine the degree of the polynomial:
- The degree of a term in a polynomial is the sum of the exponents of the variables in that term.
- For the term [tex]\( -5xy^2 \)[/tex]:
- The degree is [tex]\( 1 \)[/tex] (from [tex]\( x \)[/tex]) + [tex]\( 2 \)[/tex] (from [tex]\( y^2 \)[/tex]) = [tex]\( 3 \)[/tex].
- For the term [tex]\( 2x^2 \)[/tex]:
- The degree is [tex]\( 2 \)[/tex] (from [tex]\( x^2 \)[/tex]).
- The degree of the polynomial is the highest degree of its terms, which in this case is [tex]\( 3 \)[/tex] (from [tex]\( -5xy^2 \)[/tex]).
### Conclusion:
After fully simplifying the polynomial [tex]\( 3x^2y^2 - 5xy^2 - 3x^2y^2 + 2x^2 \)[/tex], we have:
- 2 terms: [tex]\( -5xy^2 \)[/tex] and [tex]\( 2x^2 \)[/tex].
- The highest degree term has a degree of [tex]\( 3 \)[/tex].
Therefore, the correct statement is:
It has 2 terms and a degree of 3.
### Step-by-Step Simplification:
1. Write down the polynomial:
[tex]\[ 3x^2y^2 - 5xy^2 - 3x^2y^2 + 2x^2 \][/tex]
2. Combine like terms:
- Notice that [tex]\( 3x^2y^2 \)[/tex] and [tex]\( -3x^2y^2 \)[/tex] are like terms and can be combined:
[tex]\[ 3x^2y^2 - 3x^2y^2 = 0 \][/tex]
- After combining these terms, the polynomial simplifies to:
[tex]\[ 0 - 5xy^2 + 2x^2 \][/tex]
Which is:
[tex]\[ -5xy^2 + 2x^2 \][/tex]
3. Count the remaining terms:
- The simplified polynomial [tex]\( -5xy^2 + 2x^2 \)[/tex] consists of 2 terms: [tex]\( -5xy^2 \)[/tex] and [tex]\( 2x^2 \)[/tex].
4. Determine the degree of the polynomial:
- The degree of a term in a polynomial is the sum of the exponents of the variables in that term.
- For the term [tex]\( -5xy^2 \)[/tex]:
- The degree is [tex]\( 1 \)[/tex] (from [tex]\( x \)[/tex]) + [tex]\( 2 \)[/tex] (from [tex]\( y^2 \)[/tex]) = [tex]\( 3 \)[/tex].
- For the term [tex]\( 2x^2 \)[/tex]:
- The degree is [tex]\( 2 \)[/tex] (from [tex]\( x^2 \)[/tex]).
- The degree of the polynomial is the highest degree of its terms, which in this case is [tex]\( 3 \)[/tex] (from [tex]\( -5xy^2 \)[/tex]).
### Conclusion:
After fully simplifying the polynomial [tex]\( 3x^2y^2 - 5xy^2 - 3x^2y^2 + 2x^2 \)[/tex], we have:
- 2 terms: [tex]\( -5xy^2 \)[/tex] and [tex]\( 2x^2 \)[/tex].
- The highest degree term has a degree of [tex]\( 3 \)[/tex].
Therefore, the correct statement is:
It has 2 terms and a degree of 3.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.