Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure, let's solve this step by step.
First, we need to calculate the total number of large orders. According to the table:
- Large Hot Dogs = 3
- Large Hamburgers = 18
- Large Sandwiches = 6
Adding these together gives us the total number of large orders:
[tex]\[ 3 + 18 + 6 = 27 \][/tex]
Next, we calculate the total number of all orders. We'll sum up both the standard and large orders:
- Standard Hot Dogs = 9
- Standard Hamburgers = 45
- Standard Sandwiches = 19
- Large Hot Dogs = 3
- Large Hamburgers = 18
- Large Sandwiches = 6
Adding all these together:
[tex]\[ 9 + 45 + 19 + 3 + 18 + 6 = 100 \][/tex]
Now, to find the probability that a randomly chosen order will be large, we use the formula:
[tex]\[ P (\text{Large}) = \frac{\text{Total Large Orders}}{\text{Total Orders}} = \frac{27}{100} \][/tex]
Hence, the values we have are:
[tex]\[ P (\text{Large}) = \frac{27}{100} \][/tex]
So, the detailed, step-by-step solution to find the probability that a chosen order will be large is:
[tex]\[ P (\text{Large}) = \frac{27}{100} = 0.27 \][/tex]
First, we need to calculate the total number of large orders. According to the table:
- Large Hot Dogs = 3
- Large Hamburgers = 18
- Large Sandwiches = 6
Adding these together gives us the total number of large orders:
[tex]\[ 3 + 18 + 6 = 27 \][/tex]
Next, we calculate the total number of all orders. We'll sum up both the standard and large orders:
- Standard Hot Dogs = 9
- Standard Hamburgers = 45
- Standard Sandwiches = 19
- Large Hot Dogs = 3
- Large Hamburgers = 18
- Large Sandwiches = 6
Adding all these together:
[tex]\[ 9 + 45 + 19 + 3 + 18 + 6 = 100 \][/tex]
Now, to find the probability that a randomly chosen order will be large, we use the formula:
[tex]\[ P (\text{Large}) = \frac{\text{Total Large Orders}}{\text{Total Orders}} = \frac{27}{100} \][/tex]
Hence, the values we have are:
[tex]\[ P (\text{Large}) = \frac{27}{100} \][/tex]
So, the detailed, step-by-step solution to find the probability that a chosen order will be large is:
[tex]\[ P (\text{Large}) = \frac{27}{100} = 0.27 \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.