At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the system of equations using the matrix tool, we start by writing the system in the form of [tex]\[A\mathbf{x} = \mathbf{b}\][/tex] where [tex]\(A\)[/tex] is the coefficient matrix, [tex]\(\mathbf{x}\)[/tex] is the vector of variables, and [tex]\(\mathbf{b}\)[/tex] is the constants vector.
The given system of linear equations is:
[tex]\[ \begin{array}{rcl} 4x + 11y &=& -5 \\ 4x + 8y &=& -8 \end{array} \][/tex]
First, identify the coefficient matrix [tex]\(A\)[/tex], the variables vector [tex]\(\mathbf{x}\)[/tex], and the constants vector [tex]\(\mathbf{b}\)[/tex]:
[tex]\[ \begin{pmatrix} 4 & 11 \\ 4 & 8 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -5 \\ -8 \end{pmatrix} \][/tex]
Here,
[tex]\[ A = \begin{pmatrix} 4 & 11 \\ 4 & 8 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} -5 \\ -8 \end{pmatrix} \][/tex]
We can use the matrix method to find [tex]\(\mathbf{x} = A^{-1}\mathbf{b}\)[/tex], where [tex]\(A^{-1}\)[/tex] is the inverse of the coefficient matrix [tex]\(A\)[/tex].
To find the inverse of [tex]\(A\)[/tex], first calculate the determinant of [tex]\(A\)[/tex]:
[tex]\[ \text{det}(A) = (4 \cdot 8) - (4 \cdot 11) = 32 - 44 = -12 \][/tex]
Since the determinant is non-zero, the inverse of [tex]\(A\)[/tex] exists. Now, calculate the inverse of the matrix [tex]\(A\)[/tex]:
[tex]\[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \frac{1}{-12} \begin{pmatrix} 8 & -11 \\ -4 & 4 \end{pmatrix} = \begin{pmatrix} -\frac{2}{3} & \frac{11}{12} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix} \][/tex]
Now, multiply [tex]\(A^{-1}\)[/tex] by [tex]\(\mathbf{b}\)[/tex]:
[tex]\[ \mathbf{x} = A^{-1} \mathbf{b} = \begin{pmatrix} -\frac{2}{3} & \frac{11}{12} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix} \begin{pmatrix} -5 \\ -8 \end{pmatrix} \][/tex]
Perform the matrix multiplication:
[tex]\[ \begin{pmatrix} -\frac{2}{3} & \frac{11}{12} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix} \begin{pmatrix} -5 \\ -8 \end{pmatrix} = \begin{pmatrix} (-\frac{2}{3}) \cdot (-5) + \frac{11}{12} \cdot (-8) \\ (\frac{1}{3}) \cdot (-5) + (-\frac{1}{3}) \cdot (-8) \end{pmatrix} \][/tex]
Calculate each element step-by-step:
[tex]\[ \begin{pmatrix} \frac{10}{3} - \frac{88}{12} \\ -\frac{5}{3} + \frac{8}{3} \end{pmatrix} = \begin{pmatrix} \frac{10}{3} - \frac{22}{3} \\ \frac{3}{3} \end{pmatrix} = \begin{pmatrix} -\frac{12}{3} \\ 1 \end{pmatrix} = \begin{pmatrix} -4 \\ 1 \end{pmatrix} \][/tex]
Thus, the solution to the given system of equations is the ordered pair [tex]\((-4, 1)\)[/tex].
Therefore, the solution is:
[tex]\[ \boxed{(-4, 1)} \][/tex]
The given system of linear equations is:
[tex]\[ \begin{array}{rcl} 4x + 11y &=& -5 \\ 4x + 8y &=& -8 \end{array} \][/tex]
First, identify the coefficient matrix [tex]\(A\)[/tex], the variables vector [tex]\(\mathbf{x}\)[/tex], and the constants vector [tex]\(\mathbf{b}\)[/tex]:
[tex]\[ \begin{pmatrix} 4 & 11 \\ 4 & 8 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -5 \\ -8 \end{pmatrix} \][/tex]
Here,
[tex]\[ A = \begin{pmatrix} 4 & 11 \\ 4 & 8 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} -5 \\ -8 \end{pmatrix} \][/tex]
We can use the matrix method to find [tex]\(\mathbf{x} = A^{-1}\mathbf{b}\)[/tex], where [tex]\(A^{-1}\)[/tex] is the inverse of the coefficient matrix [tex]\(A\)[/tex].
To find the inverse of [tex]\(A\)[/tex], first calculate the determinant of [tex]\(A\)[/tex]:
[tex]\[ \text{det}(A) = (4 \cdot 8) - (4 \cdot 11) = 32 - 44 = -12 \][/tex]
Since the determinant is non-zero, the inverse of [tex]\(A\)[/tex] exists. Now, calculate the inverse of the matrix [tex]\(A\)[/tex]:
[tex]\[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \frac{1}{-12} \begin{pmatrix} 8 & -11 \\ -4 & 4 \end{pmatrix} = \begin{pmatrix} -\frac{2}{3} & \frac{11}{12} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix} \][/tex]
Now, multiply [tex]\(A^{-1}\)[/tex] by [tex]\(\mathbf{b}\)[/tex]:
[tex]\[ \mathbf{x} = A^{-1} \mathbf{b} = \begin{pmatrix} -\frac{2}{3} & \frac{11}{12} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix} \begin{pmatrix} -5 \\ -8 \end{pmatrix} \][/tex]
Perform the matrix multiplication:
[tex]\[ \begin{pmatrix} -\frac{2}{3} & \frac{11}{12} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix} \begin{pmatrix} -5 \\ -8 \end{pmatrix} = \begin{pmatrix} (-\frac{2}{3}) \cdot (-5) + \frac{11}{12} \cdot (-8) \\ (\frac{1}{3}) \cdot (-5) + (-\frac{1}{3}) \cdot (-8) \end{pmatrix} \][/tex]
Calculate each element step-by-step:
[tex]\[ \begin{pmatrix} \frac{10}{3} - \frac{88}{12} \\ -\frac{5}{3} + \frac{8}{3} \end{pmatrix} = \begin{pmatrix} \frac{10}{3} - \frac{22}{3} \\ \frac{3}{3} \end{pmatrix} = \begin{pmatrix} -\frac{12}{3} \\ 1 \end{pmatrix} = \begin{pmatrix} -4 \\ 1 \end{pmatrix} \][/tex]
Thus, the solution to the given system of equations is the ordered pair [tex]\((-4, 1)\)[/tex].
Therefore, the solution is:
[tex]\[ \boxed{(-4, 1)} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.