At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the margin of error for the given confidence interval, follow these steps:
1. Identify the confidence interval: The provided confidence interval for the true difference in proportions of likely voters is from [tex]\(-0.014\)[/tex] to [tex]\(0.064\)[/tex].
2. Understand the confidence interval: The margin of error is the measure of the extent of the interval from the center point (midpoint) to either endpoint. It indicates the range within which the true difference in proportions is likely to fall.
3. Calculate the margin of error:
- First, calculate the difference between the upper bound and the lower bound of the confidence interval:
[tex]\[ 0.064 - (-0.014) \][/tex]
- Simplify the subtraction:
[tex]\[ 0.064 + 0.014 = 0.078 \][/tex]
4. Find the margin of error:
- The margin of error is half the width of the confidence interval:
[tex]\[ \frac{0.078}{2} = 0.039 \][/tex]
Therefore, the margin of error for this confidence interval is [tex]\(0.039\)[/tex].
Thus, the correct option is:
[tex]\[ \boxed{\frac{0.064-(-0.014)}{2}=0.039} \][/tex]
1. Identify the confidence interval: The provided confidence interval for the true difference in proportions of likely voters is from [tex]\(-0.014\)[/tex] to [tex]\(0.064\)[/tex].
2. Understand the confidence interval: The margin of error is the measure of the extent of the interval from the center point (midpoint) to either endpoint. It indicates the range within which the true difference in proportions is likely to fall.
3. Calculate the margin of error:
- First, calculate the difference between the upper bound and the lower bound of the confidence interval:
[tex]\[ 0.064 - (-0.014) \][/tex]
- Simplify the subtraction:
[tex]\[ 0.064 + 0.014 = 0.078 \][/tex]
4. Find the margin of error:
- The margin of error is half the width of the confidence interval:
[tex]\[ \frac{0.078}{2} = 0.039 \][/tex]
Therefore, the margin of error for this confidence interval is [tex]\(0.039\)[/tex].
Thus, the correct option is:
[tex]\[ \boxed{\frac{0.064-(-0.014)}{2}=0.039} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.