At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

[tex]\[
x_2 = -8 + 17 \\
x_2 = 9
\][/tex]


Sagot :

Certainly! Let's solve the given mathematical equation step-by-step.

Given:
[tex]\[ x_2 = -8 + 17 \][/tex]
First, we need to evaluate the right-hand side:
[tex]\[ x_2 = -8 + 17 \][/tex]
[tex]\[ x_2 = 9 \][/tex]

Thus, we have:
[tex]\[ x^2 = 9 \][/tex]

Next, we need to solve for [tex]\( x \)[/tex]. The equation [tex]\( x^2 = 9 \)[/tex] implies that [tex]\( x \)[/tex] can be either the positive or the negative square root of 9. Therefore, we have two possible solutions:
[tex]\[ x = \sqrt{9} \][/tex]
[tex]\[ x = -\sqrt{9} \][/tex]

Evaluating the square roots, we get:
[tex]\[ \sqrt{9} = 3 \][/tex]
[tex]\[ -\sqrt{9} = -3 \][/tex]

Thus, the solutions to the equation [tex]\( x^2 = 9 \)[/tex] are:
[tex]\[ x = 3 \][/tex]
[tex]\[ x = -3 \][/tex]

So, the final solutions are:
[tex]\[ x_1 = 3 \][/tex]
[tex]\[ x_2 = -3 \][/tex]

Therefore, the values of [tex]\( x \)[/tex] are [tex]\( 3 \)[/tex] and [tex]\( -3 \)[/tex].