Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the explicit formula for the nth term of the sequence defined recursively by [tex]\( a_n = 4a_{n-1} \)[/tex] with the first term given as [tex]\( a_1 = 0.5 \)[/tex], let’s proceed step by step:
1. Understand the Recursive Definition:
The sequence is defined such that each term is 4 times the previous term:
[tex]\[ a_n = 4a_{n-1} \][/tex]
2. Determine the Pattern:
Let's calculate the first few terms to observe a pattern:
- The first term is [tex]\( a_1 = 0.5 \)[/tex]
- The second term is [tex]\( a_2 = 4a_1 = 4 \cdot 0.5 = 2 \)[/tex]
- The third term is [tex]\( a_3 = 4a_2 = 4 \cdot 2 = 8 \)[/tex]
- The fourth term is [tex]\( a_4 = 4a_3 = 4 \cdot 8 = 32 \)[/tex]
3. Identify the General Form:
We see that the terms of the sequence are increasing by a factor of 4 each time. To express this relationship generally, we can write:
[tex]\[ a_2 = 4 \cdot 0.5 = 0.5 \cdot 4^1 \][/tex]
[tex]\[ a_3 = 4 \cdot a_2 = 4 \cdot (0.5 \cdot 4^1) = 0.5 \cdot 4^2 \][/tex]
[tex]\[ a_4 = 4 \cdot a_3 = 4 \cdot (0.5 \cdot 4^2) = 0.5 \cdot 4^3 \][/tex]
From this pattern, we can infer that:
[tex]\[ a_n = 0.5 \cdot 4^{n-1} \][/tex]
4. Confirm the Explicit Formula:
The general formula for the nth term of the sequence is:
[tex]\[ a_n = 0.5 \cdot 4^{n-1} \][/tex]
This matches the option E which is [tex]\( a_n = 0.5 \cdot 4^{n-1} \)[/tex].
Therefore, the correct explicit formula for the nth term of the sequence is given by option E:
[tex]\[ a_n = 0.5 \cdot 4^{(n-1)} \][/tex]
1. Understand the Recursive Definition:
The sequence is defined such that each term is 4 times the previous term:
[tex]\[ a_n = 4a_{n-1} \][/tex]
2. Determine the Pattern:
Let's calculate the first few terms to observe a pattern:
- The first term is [tex]\( a_1 = 0.5 \)[/tex]
- The second term is [tex]\( a_2 = 4a_1 = 4 \cdot 0.5 = 2 \)[/tex]
- The third term is [tex]\( a_3 = 4a_2 = 4 \cdot 2 = 8 \)[/tex]
- The fourth term is [tex]\( a_4 = 4a_3 = 4 \cdot 8 = 32 \)[/tex]
3. Identify the General Form:
We see that the terms of the sequence are increasing by a factor of 4 each time. To express this relationship generally, we can write:
[tex]\[ a_2 = 4 \cdot 0.5 = 0.5 \cdot 4^1 \][/tex]
[tex]\[ a_3 = 4 \cdot a_2 = 4 \cdot (0.5 \cdot 4^1) = 0.5 \cdot 4^2 \][/tex]
[tex]\[ a_4 = 4 \cdot a_3 = 4 \cdot (0.5 \cdot 4^2) = 0.5 \cdot 4^3 \][/tex]
From this pattern, we can infer that:
[tex]\[ a_n = 0.5 \cdot 4^{n-1} \][/tex]
4. Confirm the Explicit Formula:
The general formula for the nth term of the sequence is:
[tex]\[ a_n = 0.5 \cdot 4^{n-1} \][/tex]
This matches the option E which is [tex]\( a_n = 0.5 \cdot 4^{n-1} \)[/tex].
Therefore, the correct explicit formula for the nth term of the sequence is given by option E:
[tex]\[ a_n = 0.5 \cdot 4^{(n-1)} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.