Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine how many solutions the equation [tex]\(\frac{x+2}{x-4} - \frac{1}{x} = \frac{4}{x^2-4x}\)[/tex] has, we need to analyze it step-by-step:
1. Simplify and understand the given equation:
[tex]\[ \frac{x+2}{x-4} - \frac{1}{x} = \frac{4}{x^2-4x} \][/tex]
We notice that the term [tex]\(\frac{4}{x^2-4x}\)[/tex] matches [tex]\( \frac{4}{x(x-4)} \)[/tex] since [tex]\(x^2-4x\)[/tex] can be factored as [tex]\(x(x-4)\)[/tex].
2. Rewrite the equation with the common denominator:
Convert [tex]\( \frac{x+2}{x-4} \)[/tex] and [tex]\( \frac{1}{x} \)[/tex] to have a common denominator of [tex]\( x(x-4) \)[/tex]:
[tex]\[ \frac{(x+2)x - (x-4)}{x(x-4)} = \frac{4}{x(x-4)} \][/tex]
Simplify the numerator:
[tex]\[ \frac{x^2 + 2x - x + 4}{x(x-4)} = \frac{4}{x(x-4)} \][/tex]
Which further simplifies to:
[tex]\[ \frac{x^2 + x + 4}{x(x-4)} = \frac{4}{x(x-4)} \][/tex]
3. Set the numerators equal since the denominators are the same:
Since the denominators [tex]\(x(x-4)\)[/tex] don't affect solutions other than causing [tex]\(x \neq 0\)[/tex] and [tex]\(x \neq 4\)[/tex]:
[tex]\[ x^2 + x + 4 = 4 \][/tex]
Simplify this equation:
[tex]\[ x^2 + x + 4 - 4 = 0 \][/tex]
[tex]\[ x^2 + x = 0 \][/tex]
4. Solve the quadratic equation:
Factor the quadratic equation:
[tex]\[ x(x + 1) = 0 \][/tex]
The solutions to this equation are:
[tex]\[ x = 0 \quad \text{or} \quad x = -1 \][/tex]
5. Evaluate and reject extraneous solutions:
From earlier, we noticed [tex]\(x \neq 0\)[/tex] and [tex]\(x \neq 4\)[/tex] to avoid division by zero. Thus, [tex]\( x = 0 \)[/tex] is not a valid solution. Therefore, only the solution [tex]\( x = -1 \)[/tex] remains.
6. Count the valid solutions:
Considering [tex]\(x = -1\)[/tex] as the valid solution, we see there is only one valid solution.
Therefore, the equation [tex]\(\frac{x+2}{x-4} - \frac{1}{x} = \frac{4}{x^2-4 x}\)[/tex] has exactly:
[tex]\[ \boxed{1} \][/tex]
Thus, the correct answer is B. 1.
1. Simplify and understand the given equation:
[tex]\[ \frac{x+2}{x-4} - \frac{1}{x} = \frac{4}{x^2-4x} \][/tex]
We notice that the term [tex]\(\frac{4}{x^2-4x}\)[/tex] matches [tex]\( \frac{4}{x(x-4)} \)[/tex] since [tex]\(x^2-4x\)[/tex] can be factored as [tex]\(x(x-4)\)[/tex].
2. Rewrite the equation with the common denominator:
Convert [tex]\( \frac{x+2}{x-4} \)[/tex] and [tex]\( \frac{1}{x} \)[/tex] to have a common denominator of [tex]\( x(x-4) \)[/tex]:
[tex]\[ \frac{(x+2)x - (x-4)}{x(x-4)} = \frac{4}{x(x-4)} \][/tex]
Simplify the numerator:
[tex]\[ \frac{x^2 + 2x - x + 4}{x(x-4)} = \frac{4}{x(x-4)} \][/tex]
Which further simplifies to:
[tex]\[ \frac{x^2 + x + 4}{x(x-4)} = \frac{4}{x(x-4)} \][/tex]
3. Set the numerators equal since the denominators are the same:
Since the denominators [tex]\(x(x-4)\)[/tex] don't affect solutions other than causing [tex]\(x \neq 0\)[/tex] and [tex]\(x \neq 4\)[/tex]:
[tex]\[ x^2 + x + 4 = 4 \][/tex]
Simplify this equation:
[tex]\[ x^2 + x + 4 - 4 = 0 \][/tex]
[tex]\[ x^2 + x = 0 \][/tex]
4. Solve the quadratic equation:
Factor the quadratic equation:
[tex]\[ x(x + 1) = 0 \][/tex]
The solutions to this equation are:
[tex]\[ x = 0 \quad \text{or} \quad x = -1 \][/tex]
5. Evaluate and reject extraneous solutions:
From earlier, we noticed [tex]\(x \neq 0\)[/tex] and [tex]\(x \neq 4\)[/tex] to avoid division by zero. Thus, [tex]\( x = 0 \)[/tex] is not a valid solution. Therefore, only the solution [tex]\( x = -1 \)[/tex] remains.
6. Count the valid solutions:
Considering [tex]\(x = -1\)[/tex] as the valid solution, we see there is only one valid solution.
Therefore, the equation [tex]\(\frac{x+2}{x-4} - \frac{1}{x} = \frac{4}{x^2-4 x}\)[/tex] has exactly:
[tex]\[ \boxed{1} \][/tex]
Thus, the correct answer is B. 1.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.