Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the factors of the polynomial [tex]\( x^3 + 5x^2 - 6x - 30 \)[/tex] by grouping, let's go through the process step by step.
1. Group the terms:
We have the polynomial [tex]\( x^3 + 5x^2 - 6x - 30 \)[/tex]. Let's group the terms in pairs:
[tex]\[ (x^3 + 5x^2) + (-6x - 30) \][/tex]
2. Factor out the common factors in each group:
- In the first group [tex]\( x^3 + 5x^2 \)[/tex], the common factor is [tex]\( x^2 \)[/tex]:
[tex]\[ x^2(x + 5) \][/tex]
- In the second group [tex]\( -6x - 30 \)[/tex], the common factor is [tex]\( -6 \)[/tex]:
[tex]\[ -6(x + 5) \][/tex]
3. Rewrite the expression with the factored groups:
Combining these, we get:
[tex]\[ x^2(x + 5) - 6(x + 5) \][/tex]
4. Factor out the common binomial factor [tex]\((x + 5)\)[/tex]:
Now, we see that [tex]\( (x + 5) \)[/tex] is a common factor in both terms:
[tex]\[ (x^2 - 6)(x + 5) \][/tex]
So, the polynomial [tex]\( x^3 + 5x^2 - 6x - 30 \)[/tex] can be factored as [tex]\( (x^2 - 6)(x + 5) \)[/tex].
From the options provided, the correct grouping is:
[tex]\[ x^2(x + 5) - 6(x + 5) \][/tex]
1. Group the terms:
We have the polynomial [tex]\( x^3 + 5x^2 - 6x - 30 \)[/tex]. Let's group the terms in pairs:
[tex]\[ (x^3 + 5x^2) + (-6x - 30) \][/tex]
2. Factor out the common factors in each group:
- In the first group [tex]\( x^3 + 5x^2 \)[/tex], the common factor is [tex]\( x^2 \)[/tex]:
[tex]\[ x^2(x + 5) \][/tex]
- In the second group [tex]\( -6x - 30 \)[/tex], the common factor is [tex]\( -6 \)[/tex]:
[tex]\[ -6(x + 5) \][/tex]
3. Rewrite the expression with the factored groups:
Combining these, we get:
[tex]\[ x^2(x + 5) - 6(x + 5) \][/tex]
4. Factor out the common binomial factor [tex]\((x + 5)\)[/tex]:
Now, we see that [tex]\( (x + 5) \)[/tex] is a common factor in both terms:
[tex]\[ (x^2 - 6)(x + 5) \][/tex]
So, the polynomial [tex]\( x^3 + 5x^2 - 6x - 30 \)[/tex] can be factored as [tex]\( (x^2 - 6)(x + 5) \)[/tex].
From the options provided, the correct grouping is:
[tex]\[ x^2(x + 5) - 6(x + 5) \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.