Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's analyze each exponential expression and determine if it models growth or decay, and what the rate is. Here is a step-by-step breakdown for each expression:
1. For the expression [tex]\( 30(1.25)^x \)[/tex]:
- This is an exponential growth model because the base, 1.25, is greater than 1.
- The percentage rate of growth is calculated based on the factor 1.25. The rate is [tex]\( (1.25 - 1) \times 100\% = 0.25 \times 100\% = 25\% \)[/tex].
2. For the expression [tex]\( 500(0.75)^x \)[/tex]:
- This is an exponential decay model because the base, 0.75, is less than 1.
- The percentage rate of decay is calculated based on the factor 0.75. The rate is [tex]\( (1 - 0.75) \times 100\% = 0.25 \times 100\% = 25\% \)[/tex].
3. For the expression [tex]\( 2(2)^x \)[/tex]:
- This is an exponential growth model because the base, 2, is greater than 1.
- The percentage rate of growth is calculated based on the factor 2. The rate is [tex]\( (2 - 1) \times 100\% = 1 \times 100\% = 100\% \)[/tex].
4. For the expression [tex]\( 4,000(1.01)^x \)[/tex]:
- This is an exponential growth model because the base, 1.01, is greater than 1.
- The percentage rate of growth is calculated based on the factor 1.01. The rate is [tex]\( (1.01 - 1) \times 100\% = 0.01 \times 100\% = 1\% \)[/tex].
5. For the expression [tex]\( 7,000(0.99)^x \)[/tex]:
- This is an exponential decay model because the base, 0.99, is less than 1.
- The percentage rate of decay is calculated based on the factor 0.99. The rate is [tex]\( (1 - 0.99) \times 100\% = 0.01 \times 100\% = 1\% \)[/tex].
Now we compile this information into the table:
[tex]\[ \begin{array}{|c|c|c|} \hline \text{Expression} & \text{Growth or Decay} & \text{Rate} \\ \hline 30(1.25)^x & \text{growth} & 25\% \\ 500(0.75)^x & \text{decay} & 25\% \\ 2(2)^x & \text{growth} & 100\% \\ 4,000(1.01)^x & \text{growth} & 1\% \\ 7,000(0.99)^x & \text{decay} & 1\% \\ \hline \end{array} \][/tex]
This table provides the correct labels for each exponential expression, identifying whether it models growth or decay, along with the corresponding rates.
1. For the expression [tex]\( 30(1.25)^x \)[/tex]:
- This is an exponential growth model because the base, 1.25, is greater than 1.
- The percentage rate of growth is calculated based on the factor 1.25. The rate is [tex]\( (1.25 - 1) \times 100\% = 0.25 \times 100\% = 25\% \)[/tex].
2. For the expression [tex]\( 500(0.75)^x \)[/tex]:
- This is an exponential decay model because the base, 0.75, is less than 1.
- The percentage rate of decay is calculated based on the factor 0.75. The rate is [tex]\( (1 - 0.75) \times 100\% = 0.25 \times 100\% = 25\% \)[/tex].
3. For the expression [tex]\( 2(2)^x \)[/tex]:
- This is an exponential growth model because the base, 2, is greater than 1.
- The percentage rate of growth is calculated based on the factor 2. The rate is [tex]\( (2 - 1) \times 100\% = 1 \times 100\% = 100\% \)[/tex].
4. For the expression [tex]\( 4,000(1.01)^x \)[/tex]:
- This is an exponential growth model because the base, 1.01, is greater than 1.
- The percentage rate of growth is calculated based on the factor 1.01. The rate is [tex]\( (1.01 - 1) \times 100\% = 0.01 \times 100\% = 1\% \)[/tex].
5. For the expression [tex]\( 7,000(0.99)^x \)[/tex]:
- This is an exponential decay model because the base, 0.99, is less than 1.
- The percentage rate of decay is calculated based on the factor 0.99. The rate is [tex]\( (1 - 0.99) \times 100\% = 0.01 \times 100\% = 1\% \)[/tex].
Now we compile this information into the table:
[tex]\[ \begin{array}{|c|c|c|} \hline \text{Expression} & \text{Growth or Decay} & \text{Rate} \\ \hline 30(1.25)^x & \text{growth} & 25\% \\ 500(0.75)^x & \text{decay} & 25\% \\ 2(2)^x & \text{growth} & 100\% \\ 4,000(1.01)^x & \text{growth} & 1\% \\ 7,000(0.99)^x & \text{decay} & 1\% \\ \hline \end{array} \][/tex]
This table provides the correct labels for each exponential expression, identifying whether it models growth or decay, along with the corresponding rates.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.