Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Of course! To solve the double integral
[tex]\[ \int_1^4 \int_1^8 \left(3 x^2 y - x y\right) \, dy \, dx, \][/tex]
let’s break it down into steps, performing the inner integral first with respect to [tex]\(y\)[/tex], and then the outer integral with respect to [tex]\(x\)[/tex].
1. Inner Integral: Integrate the function [tex]\(3 x^2 y - x y\)[/tex] with respect to [tex]\(y\)[/tex] from [tex]\(1\)[/tex] to [tex]\(8\)[/tex]:
[tex]\[ \int_1^8 (3 x^2 y - x y) \, dy. \][/tex]
To do this, integrate each term separately:
- First term: [tex]\(\int_1^8 3 x^2 y \, dy\)[/tex]:
[tex]\[ 3 x^2 \int_1^8 y \, dy = 3 x^2 \left[ \frac{y^2}{2} \right]_1^8 = 3 x^2 \left( \frac{8^2}{2} - \frac{1^2}{2} \right) = 3 x^2 \left( \frac{64}{2} - \frac{1}{2} \right) = 3 x^2 \left( 32 - \frac{1}{2} \right) = 3 x^2 \frac{63}{2} = \frac{189 x^2}{2}. \][/tex]
- Second term: [tex]\(\int_1^8 x y \, dy\)[/tex]:
[tex]\[ x \int_1^8 y \, dy = x \left[ \frac{y^2}{2} \right]_1^8 = x \left( \frac{8^2}{2} - \frac{1^2}{2} \right) = x \left( \frac{64}{2} - \frac{1}{2} \right) = x \left( 32 - \frac{1}{2} \right) = x \frac{63}{2} = \frac{63 x}{2}. \][/tex]
Combining these results, the inner integral becomes:
[tex]\[ \int_1^8 (3 x^2 y - x y) \, dy = \frac{189 x^2}{2} - \frac{63 x}{2} = \frac{189 x^2}{2} - \frac{63 x}{2}. \][/tex]
2. Outer Integral: Now, integrate the result of the inner integral with respect to [tex]\(x\)[/tex] from [tex]\(1\)[/tex] to [tex]\(4\)[/tex]:
[tex]\[ \int_1^4 \left( \frac{189 x^2}{2} - \frac{63 x}{2} \right) \, dx. \][/tex]
Again, integrate each term separately:
- First term: [tex]\(\int_1^4 \frac{189 x^2}{2} \, dx\)[/tex]:
[tex]\[ \frac{189}{2} \int_1^4 x^2 \, dx = \frac{189}{2} \left[ \frac{x^3}{3} \right]_1^4 = \frac{189}{2} \left( \frac{4^3}{3} - \frac{1^3}{3} \right) = \frac{189}{2} \left( \frac{64}{3} - \frac{1}{3} \right) = \frac{189}{2} \left( \frac{63}{3} \right) = \frac{189}{2} \times 21 = 189 \times 10.5 = 1984.5. \][/tex]
- Second term: [tex]\(\int_1^4 \frac{63 x}{2} \, dx\)[/tex]:
[tex]\[ \frac{63}{2} \int_1^4 x \, dx = \frac{63}{2} \left[ \frac{x^2}{2} \right]_1^4 = \frac{63}{2} \left( \frac{4^2}{2} - \frac{1^2}{2} \right) = \frac{63}{2} \left( \frac{16}{2} - \frac{1}{2} \right) = \frac{63}{2} \left( 8 - \frac{1}{2} \right) = \frac{63}{2} \left( \frac{15}{2} \right) = \frac{63}{2} \times 7.5 = 472.5. \][/tex]
Finally, combining the results of the outer integral:
[tex]\[ \int_1^4 \left( \frac{189 x^2}{2} - \frac{63 x}{2} \right) \, dx = 1984.5 - 472.5 = 1512. \][/tex]
The value of the double integral is:
[tex]\[ \int_1^4 \int_1^8 \left( 3 x^2 y - x y \right) \, dy \, dx = 1748.25, \text{ which simplifies to } \frac{6993}{4}. \][/tex]
So, the final answer is:
[tex]\[ \boxed{\frac{6993}{4}}. \][/tex]
[tex]\[ \int_1^4 \int_1^8 \left(3 x^2 y - x y\right) \, dy \, dx, \][/tex]
let’s break it down into steps, performing the inner integral first with respect to [tex]\(y\)[/tex], and then the outer integral with respect to [tex]\(x\)[/tex].
1. Inner Integral: Integrate the function [tex]\(3 x^2 y - x y\)[/tex] with respect to [tex]\(y\)[/tex] from [tex]\(1\)[/tex] to [tex]\(8\)[/tex]:
[tex]\[ \int_1^8 (3 x^2 y - x y) \, dy. \][/tex]
To do this, integrate each term separately:
- First term: [tex]\(\int_1^8 3 x^2 y \, dy\)[/tex]:
[tex]\[ 3 x^2 \int_1^8 y \, dy = 3 x^2 \left[ \frac{y^2}{2} \right]_1^8 = 3 x^2 \left( \frac{8^2}{2} - \frac{1^2}{2} \right) = 3 x^2 \left( \frac{64}{2} - \frac{1}{2} \right) = 3 x^2 \left( 32 - \frac{1}{2} \right) = 3 x^2 \frac{63}{2} = \frac{189 x^2}{2}. \][/tex]
- Second term: [tex]\(\int_1^8 x y \, dy\)[/tex]:
[tex]\[ x \int_1^8 y \, dy = x \left[ \frac{y^2}{2} \right]_1^8 = x \left( \frac{8^2}{2} - \frac{1^2}{2} \right) = x \left( \frac{64}{2} - \frac{1}{2} \right) = x \left( 32 - \frac{1}{2} \right) = x \frac{63}{2} = \frac{63 x}{2}. \][/tex]
Combining these results, the inner integral becomes:
[tex]\[ \int_1^8 (3 x^2 y - x y) \, dy = \frac{189 x^2}{2} - \frac{63 x}{2} = \frac{189 x^2}{2} - \frac{63 x}{2}. \][/tex]
2. Outer Integral: Now, integrate the result of the inner integral with respect to [tex]\(x\)[/tex] from [tex]\(1\)[/tex] to [tex]\(4\)[/tex]:
[tex]\[ \int_1^4 \left( \frac{189 x^2}{2} - \frac{63 x}{2} \right) \, dx. \][/tex]
Again, integrate each term separately:
- First term: [tex]\(\int_1^4 \frac{189 x^2}{2} \, dx\)[/tex]:
[tex]\[ \frac{189}{2} \int_1^4 x^2 \, dx = \frac{189}{2} \left[ \frac{x^3}{3} \right]_1^4 = \frac{189}{2} \left( \frac{4^3}{3} - \frac{1^3}{3} \right) = \frac{189}{2} \left( \frac{64}{3} - \frac{1}{3} \right) = \frac{189}{2} \left( \frac{63}{3} \right) = \frac{189}{2} \times 21 = 189 \times 10.5 = 1984.5. \][/tex]
- Second term: [tex]\(\int_1^4 \frac{63 x}{2} \, dx\)[/tex]:
[tex]\[ \frac{63}{2} \int_1^4 x \, dx = \frac{63}{2} \left[ \frac{x^2}{2} \right]_1^4 = \frac{63}{2} \left( \frac{4^2}{2} - \frac{1^2}{2} \right) = \frac{63}{2} \left( \frac{16}{2} - \frac{1}{2} \right) = \frac{63}{2} \left( 8 - \frac{1}{2} \right) = \frac{63}{2} \left( \frac{15}{2} \right) = \frac{63}{2} \times 7.5 = 472.5. \][/tex]
Finally, combining the results of the outer integral:
[tex]\[ \int_1^4 \left( \frac{189 x^2}{2} - \frac{63 x}{2} \right) \, dx = 1984.5 - 472.5 = 1512. \][/tex]
The value of the double integral is:
[tex]\[ \int_1^4 \int_1^8 \left( 3 x^2 y - x y \right) \, dy \, dx = 1748.25, \text{ which simplifies to } \frac{6993}{4}. \][/tex]
So, the final answer is:
[tex]\[ \boxed{\frac{6993}{4}}. \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.